Skip to main content
Log in

MscCG from Corynebacterium glutamicum: functional significance of the C-terminal domain

  • Original Paper
  • Published:
European Biophysics Journal Aims and scope Submit manuscript

Abstract

Corynebacterium glutamicum is used in microbial biotechnology for the production of amino acids, e.g., glutamate and lysine. Excretion of glutamate into the surrounding medium under production conditions is mediated by MscCG, an MscS-type mechanosensitive channel. In difference to most other MscS-type channel proteins, MscCG carries, in addition to the N-terminal pore domain, a long C-terminal domain that amounts to about half of the size of the protein and harbors an additional transmembrane segment. Here we study the impact of the C-terminal domain on both functions of MscCG as mechanosensitive channel and as glutamate exporter. Sequential truncations of the C-terminal domain were applied, as well as deletion of particular subdomains, replacement of these segments by other amino acid sequences, and sequence randomization. Several parameters of cell physiology and bioenergetics of the obtained mutants related to both glutamate excretion and response to osmotic stress were quantified. All three subdomains of the C-terminal domain, i.e., the periplasmic loop, the fourth transmembrane segment, and the cytoplasmic loop, proved to be of core significance for MscCG function, in particular for glutamate excretion.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Bass RB, Strop P, Barclay M, Rees DC (2002) Crystal structure of Escherichia coli MscS, a voltage-modulated and mechanosensitive channel. Science 298:1582–1587

    Article  CAS  PubMed  Google Scholar 

  • Becker J, Wittmann C (2012) Systems and synthetic metabolic engineering for amino acid production—the heartbeat of industrial strain development. Curr Opin Biotechnol 23:718–726

    Article  CAS  PubMed  Google Scholar 

  • Becker M, Borngen K, Nomura T, Battle AR, Marin K, Martinac B, Kramer R (2013) Glutamate efflux mediated by Corynebacterium glutamicum MscCG, Escherichia coli MscS, and their derivatives. Biochim Biophys Acta 1828:1230–1240

    Article  CAS  PubMed  Google Scholar 

  • Becker M, Maximov S, Becker M, Meyer U, Wittmann A, Kramer R (2014) Analysis of putative protomer crosstalk in the trimeric transporter BetP: the heterotrimer approach. Biochim Biophys Acta 1837:888–898

    Article  CAS  PubMed  Google Scholar 

  • Berrier C, Besnard M, Ajouz B, Coulombe A, Ghazi A (1996) Multiple mechanosensitive ion channels from Escherichia coli, activated at different thresholds of applied pressure. J Membr Biol 151:175–187

    Article  CAS  PubMed  Google Scholar 

  • Borngen K, Battle AR, Moker N, Morbach S, Marin K, Martinac B, Kramer R (2010) The properties and contribution of the Corynebacterium glutamicum MscS variant to fine-tuning of osmotic adaptation. Biochim Biophys Acta 1798:2141–2149

    Article  PubMed  Google Scholar 

  • Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248–254

    Article  CAS  PubMed  Google Scholar 

  • Eggeling L, Sahm H (2003) New ubiquitous translocators: amino acid export by Corynebacterium glutamicum and Escherichia coli. Arch Microbiol 180:155–160

    Article  CAS  PubMed  Google Scholar 

  • Grant SG, Jessee J, Bloom FR, Hanahan D (1990) Differential plasmid rescue from transgenic mouse DNAs into Escherichia coli methylation-restriction mutants. Proc Natl Acad Sci USA 87:4645–4649

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Gutmann M, Hoischen C, Krämer R (1992) Carrier-mediated glutamate secretion by Corynebacterium glutamicum under biotin limitation. Biochim Biophys Acta 1112:115–123

    Article  CAS  PubMed  Google Scholar 

  • Hoischen C, Krämer R (1990) Membrane alteration is necessary but not sufficient for effective glutamate secretion in Corynebacterium glutamicum. J Bacteriol 172:3409–3416

    PubMed Central  CAS  PubMed  Google Scholar 

  • Island MD, Kadner RJ (1993) Interplay between the membrane-associated UhpB and UhpC regulatory proteins. J Bacteriol 175:5028–5034

    PubMed Central  CAS  PubMed  Google Scholar 

  • Jakoby M, Krämer R, Burkovski A (1999) Nitrogen regulation in Corynebacterium glutamicum: isolation of genes involved and biochemical characterization of corresponding proteins. FEMS Microbiol Lett 173:303–310

    Article  CAS  PubMed  Google Scholar 

  • Jarlier V, Nikaido H (1994) Mycobacterial cell wall: structure and role in natural resistance to antibiotics. FEMS Microbiol Lett 123:11–18

    Article  CAS  PubMed  Google Scholar 

  • Krämer R (1994) Secretion of amino acids by bacteria: physiology and mechanism. FEMS Microbiol Rev 13:75–93

    Article  Google Scholar 

  • Krämer R, Lambert C (1990) Uptake of glutamate in Corynebacterium glutamicum. 2. Evidence for a primary active transport system. Eur J Biochem 194:937–944

    Article  PubMed  Google Scholar 

  • Landfald B, Strom AR (1986) Choline-glycine betaine pathway confers a high level of osmotic tolerance in Escherichia coli. J Bacteriol 165:849–855

    PubMed Central  CAS  PubMed  Google Scholar 

  • Laneelle MA, Tropis M, Daffe M (2013) Current knowledge on mycolic acids in Corynebacterium glutamicum and their relevance for biotechnological processes. Appl Microbiol Biotechnol 97:9923–9930

    Article  CAS  PubMed  Google Scholar 

  • Martinac B (2001) Mechanosensitive channels in prokaryotes. Cell Physiol Biochem 11:61–76

    Article  CAS  PubMed  Google Scholar 

  • Naismith JH, Booth IR (2012) Bacterial mechanosensitive channels–MscS: evolution’s solution to creating sensitivity in function. Annu Rev Biophys 41:157–177

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Nakamura J, Hirano S, Ito H, Wachi M (2007) Mutations of the Corynebacterium glutamicum NCgl1221 gene, encoding a mechanosensitive channel homolog, induce l-glutamic acid production. Appl Environ Microbiol 73:4491–4498

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Nakayama Y, Yoshimura K, Iida H (2012) A gain-of-function mutation in gating of Corynebacterium glutamicum NCgl1221 causes constitutive glutamate secretion. Appl Environ Microbiol 78:5432–5434

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Nakayama Y, Yoshimura K, Iida H (2013) Electrophysiological characterization of the mechanosensitive channel MscCG in Corynebacterium glutamicum. Biophys J 105:1366–1375

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Nasie I, Steiner-Mordoch S, Schuldiner S (2013) Topology determination of untagged membrane proteins. Methods Mol Biol 1033:121–130

    Article  CAS  PubMed  Google Scholar 

  • Nottebrock D, Meyer U, Krämer R, Morbach S (2003) Molecular and biochemical characterization of mechanosensitive channels in Corynebacterium glutamicum. FEMS Microbiol Lett 218:305–309

    Article  CAS  PubMed  Google Scholar 

  • Ozcan N, Ejsing CS, Shevchenko A, Lipski A, Morbach S, Krämer R (2007) Osmolality, temperature, and membrane lipid composition modulate the activity of betaine transporter BetP in Corynebacterium glutamicum. J Bacteriol 189:7485–7496

    Article  PubMed Central  PubMed  Google Scholar 

  • Rottenberg H (1979) Non-equilibrium thermodynamics of energy conversion in bioenergetics. Biochim Biophys Acta 549:225–253

    Article  CAS  PubMed  Google Scholar 

  • Rübenhagen R, Rönsch H, Jung H, Krämer R, Morbach S (2000) Osmosensor and osmoregulator properties of the betaine carrier BetP from Corynebacterium glutamicum in proteoliposomes. J Biol Chem 275:735–741

    Article  PubMed  Google Scholar 

  • Ruffert S, Lambert C, Peter H, Wendisch VF, Krämer R (1997) Efflux of compatible solutes in Corynebacterium glutamicum mediated by osmoregulated channel activity. Eur J Biochem 247:572–580

    Article  CAS  PubMed  Google Scholar 

  • Sano C (2009) History of glutamate production. Am J Clin Nutr 90:728S–732S

    Article  CAS  PubMed  Google Scholar 

  • Sukharev S (2002) Purification of the small mechanosensitive channel of Escherichia coli (MscS): the subunit structure, conduction, and gating characteristics in liposomes. Biophys J 83:290–298

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Sukharev S, Sachs F (2012) Molecular force transduction by ion channels: diversity and unifying principles. J Cell Sci 125:3075–3083

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Sukharev SI, Martinac B, Arshavsky VY, Kung C (1993) Two types of mechanosensitive channels in the Escherichia coli cell envelope: solubilization and functional reconstitution. Biophys J 65:177–183

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Teixeira de Mattos MJ, Neijssel OM (1997) Bioenergetic consequences of microbial adaptation to low-nutrient environments. J Biotechnol 59:117–126

    Article  CAS  PubMed  Google Scholar 

  • Wilson ME, Maksaev G, Haswell ES (2013) MscS-like mechanosensitive channels in plants and microbes. Biochemistry 52:5708–5722

    Article  PubMed Central  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We gratefully acknowledge valuable discussions with Boris Martinac, Takeshi Nomura, Andrew Battle, and Yoshitaka Nakayama (Victor Chang Cardiac Research Institute, Sydney, Australia) within the joint project on MscCG. We would like to thank Anja Wittmann for excellent technical assistance.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Reinhard Krämer.

Additional information

Special issue: Biophysics of Mechanotransduction.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 2403 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Becker, M., Krämer, R. MscCG from Corynebacterium glutamicum: functional significance of the C-terminal domain. Eur Biophys J 44, 577–588 (2015). https://doi.org/10.1007/s00249-015-1041-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00249-015-1041-x

Keywords

Navigation