Skip to main content

Topology Determination of Untagged Membrane Proteins

  • Protocol
  • First Online:
Membrane Biogenesis

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1033))

Abstract

The topology of integral membrane proteins with a weak topological tendency can be influenced when fused to tags, such as these used for topological determination or protein purification. Here, we describe a technique for topology determination of an untagged membrane protein. This technique, optimized for bacterial cells, allows the visualization of the protein in the native environment and incorporates the substituted-cysteine accessibility method.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Walian P, Cross TA, Jap BK (2004) Structural genomics of membrane proteins. Genome Biol 5:215

    Article  PubMed  Google Scholar 

  2. White SH (2009) Biophysical dissection of membrane proteins. Nature 459:344–346

    Article  PubMed  CAS  Google Scholar 

  3. Chang HC, Bush DR (1997) Topology of NAT2, a prototypical example of a new family of amino acid transporters. J Biol Chem 272: 30552–30557

    Article  PubMed  CAS  Google Scholar 

  4. Kast C, Canfield V, Levenson R et al (1995) Membrane topology of P-glycoprotein as determined by epitope insertion: transmembrane organization of the N-terminal domain of mdr3. Biochemistry 34:4402–4411

    Article  PubMed  CAS  Google Scholar 

  5. Kast C, Canfield V, Levenson R et al (1996) Transmembrane organization of mouse P-glycoprotein determined by epitope insertion and immunofluorescence. J Biol Chem 271:9240–9248

    Article  PubMed  CAS  Google Scholar 

  6. Kast C, Gros P (1998) Epitope insertion favors a six transmembrane domain model for the carboxy-terminal portion of the multidrug resistance-associated protein. Biochemistry 37:2305–2313

    Article  PubMed  CAS  Google Scholar 

  7. McKenna E, Hardy D, Kaback HR (1992) Insertional mutagenesis of hydrophilic domains in the lactose permease of Escherichia coli. Proc Natl Acad Sci USA 89:11954–11958

    Article  PubMed  CAS  Google Scholar 

  8. Pan CJ, Lei KJ, Annabi B et al (1998) Transmembrane topology of glucose-6-phosphatase. J Biol Chem 273:6144–6148

    Article  PubMed  CAS  Google Scholar 

  9. Manoil C, Beckwith J (1986) A genetic approach to analyzing membrane protein topology. Science 233:1403–1408

    Article  PubMed  CAS  Google Scholar 

  10. Drew D, Sjostrand D, Nilsson J et al (2002) Rapid topology mapping of Escherichia coli inner-membrane proteins by prediction and PhoA/GFP fusion analysis. Proc Natl Acad Sci USA 99:2690–2695

    Article  PubMed  CAS  Google Scholar 

  11. Feilmeier BJ, Iseminger G, Schroeder D et al (2000) Green fluorescent protein functions as a reporter for protein localization in Escherichia coli. J Bacteriol 182:4068–4076

    Article  PubMed  CAS  Google Scholar 

  12. Rothman A, Padan E, Schuldiner S (1996) Topological analysis of NhaA, a Na+/H+ antiporter from Escherichia coli. J Biol Chem 271:32288–32292

    Article  PubMed  CAS  Google Scholar 

  13. Fujinaga J, Tang XB, Casey JR (1999) Topology of the membrane domain of human erythrocyte anion exchange protein, AE1. J Biol Chem 274:6626–6633

    Article  PubMed  CAS  Google Scholar 

  14. Tang XB, Fujinaga J, Kopito R et al (1998) Topology of the region surrounding Glu681 of human AE1 protein, the erythrocyte anion exchanger. J Biol Chem 273:22545–22553

    Article  PubMed  CAS  Google Scholar 

  15. Zhu Q, Lee DW, Casey JR (2003) Novel topology in C-terminal region of the human plasma membrane anion exchanger, AE1. J Biol Chem 278:3112–3120

    Article  PubMed  CAS  Google Scholar 

  16. Ninio S, Elbaz Y, Schuldiner S (2004) The membrane topology of EmrE - a small multidrug transporter from Escherichia coli. FEBS Lett 562:193–196

    Article  PubMed  CAS  Google Scholar 

  17. Zhu Q, Casey JR (2007) Topology of transmembrane proteins by scanning cysteine accessibility mutagenesis methodology. Methods 41:439–450

    Article  PubMed  CAS  Google Scholar 

  18. Nasie I, Steiner-Mordoch S, Gold A et al (2010) Topologically random insertion of EmrE supports a pathway for evolution of inverted repeats in ion-coupled transporters. J Biol Chem 285:15234–15244

    Article  PubMed  CAS  Google Scholar 

  19. Tabor S, Richardson CC (1985) A bacteriophage T7 RNA polymerase/promoter system for controlled exclusive expression of specific genes. Proc Natl Acad Sci USA 82: 1074–1078

    Article  PubMed  CAS  Google Scholar 

  20. Li J, Xu Q, Cortes DM et al (2002) Reactions of cysteines substituted in the amphipathic N-terminal tail of a bacterial potassium channel with hydrophilic and hydrophobic maleimides. Proc Natl Acad Sci USA 99: 11605–11610

    Article  PubMed  CAS  Google Scholar 

  21. Studier FW, Moffatt BA (1986) Use of bacteriophage T7 RNA polymerase to direct selective high-level expression of cloned genes. J Mol Biol 189:113–130

    Article  PubMed  CAS  Google Scholar 

  22. https://www.nacalai.co.jp/ss/Contact/pdf/2011-12_Anatrace_products_catalog.pdf. Accessed 22 May 2012

Download references

Acknowledgments

SS is Mathilda Marks-Kennedy Professor of Biochemistry at the Hebrew University of Jerusalem. Work in our laboratory is supported by National Institutes of Health Grant NS16708 and Grant 11/08 from the Israel Science Foundation.

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Nasie, I., Steiner-Mordoch, S., Schuldiner, S. (2013). Topology Determination of Untagged Membrane Proteins. In: Rapaport, D., Herrmann, J. (eds) Membrane Biogenesis. Methods in Molecular Biology, vol 1033. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-62703-487-6_8

Download citation

  • DOI: https://doi.org/10.1007/978-1-62703-487-6_8

  • Published:

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-62703-486-9

  • Online ISBN: 978-1-62703-487-6

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics