Skip to main content

Advertisement

Log in

Optically transparent polymer devices for in situ assessment of cell electroporation

  • Original Paper
  • Published:
European Biophysics Journal Aims and scope Submit manuscript

Abstract

In order to study cell electroporation in situ, polymer devices have been fabricated from poly-dimethyl siloxane with transparent indium tin oxide parallel plate electrodes in horizontal geometry. This geometry with cells located on a single focal plane at the interface of the bottom electrode allows a longer observation time in both transmitted bright-field and reflected fluorescence microscopy modes. Using propidium iodide (PI) as a marker dye, the number of electroporated cells in a typical culture volume of 10–100 μl was quantified in situ as a function of applied voltage from 10 to 90 V in a series of \({\sim}\)2-ms pulses across 0.5-mm electrode spacing. The electric field at the interface and device current was calculated using a model that takes into account bulk screening of the transient pulse. The voltage dependence of the number of electroporated cells could be explained using a stochastic model for the electroporation kinetics, and the free energy for pore formation was found to be \(45.6\pm 0.5\) kT at room temperature. With this device, the optimum electroporation conditions can be quickly determined by monitoring the uptake of PI marker dye in situ under the application of millisecond voltage pulses. The electroporation efficiency was also quantified using an ex situ fluorescence-assisted cell sorter, and the morphology of cultured cells was evaluated after the pulsing experiment. Importantly, the efficacy of the developed device was tested independently using two cell lines (C2C12 mouse myoblast cells and yeast cells) as well as in three different electroporation buffers (phosphate buffer saline, electroporation buffer and 10 % glycerol).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  • Bard A, Faulkner L (2001) Electrochemical methods: fundamentals and applications. Wiley, New York

    Google Scholar 

  • Beunis F, Strubbe F, Marescaux M, Beeckman J, Neyts K, Verschueren ARM (2008) Dynamics of charge transport in planar devices. Phys Rev E 78(011):502–515

    Google Scholar 

  • Chalmers JJ, Haam S, Zhao Y, McCloskey K, Moore L, Zborowski M, Williams PS (1999) Quantification of cellular properties from external fields and resulting induced velocity: Cellular hydrodynamic diameter. Biotechnol Bioeng 64:509–518

    Article  CAS  PubMed  Google Scholar 

  • Chang DC, Chassy BM, Saunders JA, Sowers AE (1992) Guide to electroporation and electrofusion. Academic Press, San Diego

    Google Scholar 

  • Conway BE, Bockris JOM, Ammar IA (1951) The dielectric constant of the solution in the diffuse and helmholtz double layers at a charged interface in aqueous solution. Trans Faraday Soc 47:756–766

    Article  CAS  Google Scholar 

  • Dubey AK, Dutta-Gupta S, Kumar R, Tewari A, Basu B (2009) Time constant determination for electrical equivalent of biological cells. J Appl Phys 105(084):705–708

    Google Scholar 

  • Dubey AK, Banerjee M, Basu B (2011) Biological cell electrical field interaction: stochastic approach. J Biol Phys 37:39–50

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Dubey AK, Kumar R, Banerjee M, Basu B (2012) Analytical computation of electric field for onset of electroporation. J Comput Theor Nanosci 9:1–7

    Article  Google Scholar 

  • Escoffre JM, Dean DS, Hubert M, Rols MP, Favard C (2007) Membrane perturbation by an external electric field: a mechanism to permit molecular uptake. Eur Biophys J 36:973–983

    Article  CAS  PubMed  Google Scholar 

  • Escoffre JM, Hubert M, Teissie J, Rols MP, Favard C (2014) Evidence for electro-induced membrane defects assessed by lateral mobility measurement of a GPi anchored protein. Eur Biophys J 43:277–286

    Article  CAS  PubMed  Google Scholar 

  • Fox MB, Esveld DC, Valero A, Luttge R, Mastwijk HC, Bartels PV, van den Berg A, Boom RM (2006) Electroporation of cells in microfluidic devices: a review. Anal Bioanal Chem 385:474–485

    Article  CAS  PubMed  Google Scholar 

  • French DM, Uhler MD, Gilgenbach RM, Lau YY (2009) Conductive versus capacitive coupling for cell electroporation with nanosecond pulses. J Appl Phys 106(074):701–704

    Google Scholar 

  • Gabriel B, Teissie J (1998) Fluorescence imaging in the millisecond time range of membrane electropermeabilisation of single cells using a rapid ultra-low-light intensifying detection system. Eur Biophys J 27:291–298

    Article  CAS  Google Scholar 

  • Garner AL, Neculaes VB (2012) Extending membrane pore lifetime with ac fields: a modeling study. J Appl Phys 112(014):701–707

    Google Scholar 

  • Garner AL, Deminsky M, Neculaes VB, Chashihin V, Knizhnik A, Potapkin B (2013) Cell membrane thermal gradients induced by electromagnetic fields. J Appl Phys 113(214):701–711

    Google Scholar 

  • Glaser RW, Leikin SL, Chernomordik LV, Pastushenko VF, Sokirko AI (1988) Reversible electrical breakdown of lipid bilayers: formation and evolution of pores. Biochim Biophys Acta 940:275–287

    Article  CAS  PubMed  Google Scholar 

  • Grosse C, Schwan HP (1992) Cellular membrane potentials induced by alternating fields. Biophys J 53:1632–1642

    Article  Google Scholar 

  • Haberl S, Miklavcic D, Sersa G, Rubinsky B (2013) Cell membrane electroporation-Part 2: the applications. IEEE Electr Insul M 29:29–37

    Article  Google Scholar 

  • Hai A, Spira M (2012) On-chip electroporation, membrane repair dynamics and transient in-cell recordings by arrays of gold mushroom-shaped microelectrodes. Lab Chip 12:2865–2873

    Article  CAS  PubMed  Google Scholar 

  • Isambert H (1998) Understanding the electroporation of cells and artificial bilayer membranes. Phys Rev Lett 80:3404–3407

    Article  CAS  Google Scholar 

  • Jain T, Papas A, Jadhav A, McBride R, Saez E (2012) In situ electroporation of surface-bound sirnas in microwell arrays. Lab Chip 12:939–947

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Joshi RP, Hu Q (2012) Role of electropores on membrane blebbing: a model energy-based analysis. J Appl Phys 112(064):703–707

    Google Scholar 

  • Kim J, Cho K, Shim M, Lee W, Jung N, Chung C, Chang J (2008) A novel electroporation method using a capillary and wire-type electrode. Biosens Bioelectron 23:1353–1360

    Article  CAS  PubMed  Google Scholar 

  • Kinosita K, Ashikawa I, Saita N, Yoshimura H, Itoh H, Nagayama K, Ikegami A (1988) Electroporation of cell membrane visualized under a pulsed-laser fluorescence microscope. Biophys J 53:1015–1019

    Article  PubMed Central  PubMed  Google Scholar 

  • Leguebe M, Silve A, Mir LM, Poignard C (2014) Conducting and permeable states of cell membrane submitted to high voltage pulses: mathematical and numerical studies validated by the experiments. J Theor Biol 360:83–94

    Article  CAS  PubMed  Google Scholar 

  • Lu H, Schmidt MA, Jensen KF (2005) A microfluidic electroporation device for cell lysis. Lab Chip 5:23–29

    Article  CAS  PubMed  Google Scholar 

  • Miklavcic D, Towhidi L (2010) Numerical study of the electroporation pulse shape effect on molecular uptake of biological cells. Radiol Oncol 44:34–41

    Article  PubMed Central  PubMed  Google Scholar 

  • Nawarathna D, Unal K, Wickramasinghe HK (2008) Localized electroporation and molecular delivery into single living cells by atomic force microscopy. Appl Phys Lett 93(153):111–113

    Google Scholar 

  • Neu JC, Krassowska W (1999) Asymptotic model of electroporation. Phys Rev E 59:3471–3482

    Article  CAS  Google Scholar 

  • Neumann E, Schaefer-Ridder M, Wang Y, Hofschneider PH (1982) Gene transfer into mouse lyoma cells by electroporation in high electric fields. EMBO J 1:841–845

    CAS  PubMed Central  PubMed  Google Scholar 

  • Olbrich M, Rebollar E, Heitz J, Frischauf I, Romanin C (2008) Electroporation chip for adherent cells on photochemically modified polymer surfaces. Appl Phys Lett 92(013):901–903

    Google Scholar 

  • Olesen LH, Bazant MZ, Bruus H (2010) Strongly nonlinear dynamics of electrolytes in large ac voltages. Phys Rev E 82(011):501–529

    Google Scholar 

  • Pakhomova ON, Gregory BW, Khorokhorina VA, Bowman AM, Xiao S, Pakhomov AG (2011) Electroporation-induced electrosensitization. PLoS One 6:e17100

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Pliquett U, Gift EA, Weaver JC (1996) Determination of the electric field and anomalous heating caused by exponential pulses with aluminum electrodes in electroporation experiments. Bioelectrochem Bioenerg 39:39–53

    Article  CAS  Google Scholar 

  • Potter H (1988) Electroporation in biology: methods, applications, and instrumentation. Anal Biochem 174:361–373

    Article  CAS  PubMed  Google Scholar 

  • Puc M, Corovic S, Flisar K, Petkovsek M, Nastran J, Miklavcic D (2004) Techniques of signal generation required for electropermeabilization. Survey of electropermeabilization devices. Bioelectrochemistry 64:113–124

    Article  CAS  PubMed  Google Scholar 

  • Pucihar G, Kotnik T, Teissie J, Miklavcic D (2007) Electropermeabilization of dense cell suspensions. Eur Biophys J 36:173–185

    Article  PubMed  Google Scholar 

  • Pucihar G, Krmelj J, Rebersek M, Napotnik TB, Miklavcic D (2011) Equivalent pulse parameters for electroporation. IEEE Trans Biomed Eng 58:3279–3288

    Article  PubMed  Google Scholar 

  • Rebersek M, Miklavcic D (2011) Advantages and disadvantages of different concepts of electroporation pulse generation. Automatika (Zagreb) 52:12–19

    Google Scholar 

  • Saulis G, Lape R, Praneviciute R, Mickevicius D (2005) Changes of the solution pH due to exposure by high-voltage electric pulses. Bioelectrochemistry 67:101–108

    Article  CAS  PubMed  Google Scholar 

  • Shahini M, Yeow JTW (2013) Cell electroporation by cnt-featured microfluidic chip. Lab Chip 13:2585–2590

    Article  CAS  PubMed  Google Scholar 

  • Tarek M (2005) Membrane electroporation: A molecular dynamics simulation. Biophys J 88:4045–4053

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Ting CL, Appelo D, Wang ZG (2011) Minimum energy path to membrane pore formation and rupture. Phys Rev Lett 106(168):101–104

    Google Scholar 

  • Troiano GC, Stebe KJ, Raphael RM, Tung L (1999) The effects of gramicidin on electroporation of lipid bilayers. Biophys J 76:3150–3157

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Tsong TY (1991) Electroporation of cell membranes. Biophys J 60:297–306

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Valero A, Post J, Nieuwkasteele J, Braak P, Kruijer W, Berg A (2008) Gene transfer and protein dynamics in stem cells using single cell electroporation in a microfluidic device. Lab Chip 8:62–67

    Article  CAS  PubMed  Google Scholar 

  • Wang S, Lee LJ (2013) Micro-/nanofluidics based cell electroporation. Biomicrofluidics 7(011):301–314

    Google Scholar 

  • Weaver JC, Chizmadzhev YA (1996) Theory of electroporation: a review. Bioelectrochem Bioenerg 41:135–160

    Article  CAS  Google Scholar 

  • Weaver JC, Mintzer R (1981) Decreased bilayer stability due to transmembrane potentials. Phys Lett 86A:57–59

    Article  CAS  Google Scholar 

  • Yarmush ML, Golberg A, Sersa G, Kotnik T, Miklavcic D (2014) Electroporation-based technologies for medicine: principles, applications, and challenges. Ann Rev Biomed Eng 16:295–320

    Article  CAS  Google Scholar 

  • Yoo JS, Won N, Kim HB, Bang J, Kim S, Ahn S, Soh KS (2010) In vivo imaging of cancer cells with electroporation of quantum dots and multispectral imaging. J Appl Phys 107(124):702–709

    Google Scholar 

  • Yu M, Lin H (2014) Quantification of propidium iodide delivery with millisecond electric pulses: a model study. arXiv:1401.6954

Download references

Acknowledgments

We thank Bigtec Labs for the yeast samples. We also thank the Division of Biological Sciences for the FACS facility, Department of Biotechnology and Department of Science and Technology.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. Venkataraman.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Majhi, A.K., Thrivikraman, G., Basu, B. et al. Optically transparent polymer devices for in situ assessment of cell electroporation. Eur Biophys J 44, 57–67 (2015). https://doi.org/10.1007/s00249-014-1001-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00249-014-1001-x

Keywords

Navigation