Skip to main content

Advertisement

Log in

FTIR spectroscopic study of molecular organization of the antibiotic amphotericin B in aqueous solution and in DPPC lipid monolayers containing the sterols cholesterol and ergosterol

  • Original Paper
  • Published:
European Biophysics Journal Aims and scope Submit manuscript

Abstract

Langmuir monolayers of amphotericin B (AmB) were investigated by recording π–A isotherms under different pH conditions. To gain a better insight into antibiotic–membrane interactions they were monitored by use of the ATR-FTIR spectroscopy. It was observed for AmB monolayers that the limiting molecular area was larger at high than at neutral pH. Analysis of FTIR spectra at different pH revealed substantial differences, depending on ionic state, for different orientations of AmB molecules. These results enable better understanding of the participation of functional groups in the interactions between AmB and sterol-containing DPPC membranes. AmB molecules incorporated into two-component lipid monolayers bind strongly to the ergosterol-rich membrane (maximum penetration surface pressures ca 35 mN/m). The FTIR spectra revealed that the ionic state of AmB and the presence of sterols led to changes in membrane fluidity and molecular packing of the AmB molecules in the lipid membranes. These investigations should be further investigated to discover the molecular mechanism responsible for the mode of action AmB in biological systems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Arczewska M, Gagoś M (2011) Molecular organization of antibiotic amphotericin B in dipalmitoylphosphatidylcholine monolayers induced by K(+) and Na(+) ions: the Langmuir technique study. Biochim Biophys Acta 1808:2706–2713

    Article  PubMed  CAS  Google Scholar 

  • Baginski M, Borowski E (1997) Distribution of electrostatic potential around amphotericin B and its membrane targets. Theochem J Mol Struct 389:139–146

    Article  CAS  Google Scholar 

  • Baginski M, Tempczyk A, Borowski E (1989) Comparative conformational analysis of cholesterol and ergosterol by molecular mechanics. Eur Biophys J 17:159–166

    Article  PubMed  CAS  Google Scholar 

  • Baginski M, Bruni P, Borowski E (1994) Comparative analysis of the distribution of the molecular electrostatic potential for cholesterol and ergosterol. Theochem J Mol Struct 311:285–296

    Article  Google Scholar 

  • Baran M, Mazerski J (2002) Molecular modelling of membrane sterols with the use of the GROMOS 96 force field. Chem Phys Lipids 120:21–31

    Article  PubMed  CAS  Google Scholar 

  • Baran M, Borowski E, Mazerski J (2009) Molecular modeling of amphotericin B-ergosterol primary complex in water II. Biophys Chem 141:162–168

    Article  PubMed  CAS  Google Scholar 

  • Barwicz J, Tancrede P (1997) The effect of aggregation state of amphotericin-B on its interactions with cholesterol- or ergosterol-containing phosphatidylcholine monolayers. Chem Phys Lipids 85:145–155

    Article  PubMed  CAS  Google Scholar 

  • Bonilla-Marin M, Moreno-Bello M, Ortega-Blake I (1991) A microscopic electrostatic model for the amphotericin B channel. Biochim Biophys Acta 1061:65–77

    Article  PubMed  CAS  Google Scholar 

  • Brajtburg J, Bolard J (1996) Carrier effects on biological activity of amphotericin B. Clin Microbiol Rev 9:512

    PubMed  CAS  Google Scholar 

  • Bunow MR, Levin IW (1977) Vibrational Raman spectra of lipid systems containing amphotericin B. Biochim Biophys Acta 464:202–216

    Article  PubMed  CAS  Google Scholar 

  • Charbonneau C, Fournier I, Dufresne S, Barwicz J, Tancrede P (2001) The interactions of amphotericin B with various sterols in relation to its possible use in anticancer therapy. Biophys Chem 91:125–133

    Article  PubMed  CAS  Google Scholar 

  • Clejan S, Bittman R (1985) Rates of amphotericin B and filipin association with sterols. A study of changes in sterol structure and phospholipid composition of vesicles. J Biol Chem 260:2884–2889

    PubMed  CAS  Google Scholar 

  • Colline A, Bolard J, Chinsky L, Fang JR, Rinehart KL Jr (1985) Raman spectra of nystatin. Influence of impurities. J Antibiot (Tokyo) 38:181–185

    Article  CAS  Google Scholar 

  • Cotero BV, Rebolledo-Antunez S, Ortega-Blake I (1998) On the role of sterol in the formation of the amphotericin B channel. Biochim Biophys Acta 1375:43–51

    Article  PubMed  CAS  Google Scholar 

  • De Kruijff B, Gerritsen WJ, Oerlemans A, Demel RA, van Deenen LL (1974) Polyene antibiotic-sterol interactions in membranes of Acholeplasma laidlawii cells and lecithin liposomes. I. Specificity of the membrane permeability changes induced by the polyene antibiotics. Biochim Biophys Acta 339:30–43

    Article  PubMed  Google Scholar 

  • Dynarowicz-Latka P, Seoane R, Minones J Jr, Velo M, Minones J (2002) Study of penetration of amphotericin B into cholesterol or ergosterol containing dipalmitoyl phosphatidylcholine Langmuir monolayers. Colloids Surf B 27:249–263

    Article  Google Scholar 

  • Espuelas MS, Legrand P, Irache JM, Gamazo C, Orecchioni AM, Devissaguet J-P, Ygartua P (1997) Poly(ε-caprolactone) nanospheres as an alternative way to reduce amphotericin B toxicity. Internat J Pharmaceut 158:19–27

    Article  CAS  Google Scholar 

  • Fournier I, Barwicz J, Tancrede P (1998) The structuring effects of amphotericin B on pure and ergosterol- or cholesterol-containing dipalmitoylphosphatidylcholine bilayers: a differential scanning calorimetry study. Biochim Biophys Acta 1373:76–86

    Article  PubMed  CAS  Google Scholar 

  • Gagoś M, Arczewska M (2010) Spectroscopic studies of molecular organization of antibiotic amphotericin B in monolayers and dipalmitoylphosphatidylcholine lipid multibilayers. Biochim Biophys Acta 1798:2124–2130

    Article  PubMed  Google Scholar 

  • Gagoś M, Arczewska M (2011) Influence of K+ and Na+ ions on the aggregation processes of antibiotic amphotericin B: electronic absorption and FTIR spectroscopic studies. J Phys Chem B 115:3185–3192

    Article  PubMed  Google Scholar 

  • Gagoś M, Koper R, Gruszecki WI (2001) Spectrophotometric analysis of organisation of dipalmitoylphosphatidylcholine bilayers containing the polyene antibiotic amphotericin B. Biochim Biophys Acta 1511:90–98

    Article  PubMed  Google Scholar 

  • Gagoś M, Gabrielska J, Dalla Serra M, Gruszecki WI (2005) Binding of antibiotic amphotericin B to lipid membranes: monomolecular layer technique and linear dichroism-FTIR studies. Mol Membr Biol 22:433–442

    Article  PubMed  Google Scholar 

  • Gagoś M, Herec M, Arczewska M, Czernel G, Dalla Serra M, Gruszecki WI (2008) Anomalously high aggregation level of the polyene antibiotic amphotericin B in acidic medium: implications for the biological action. Biophys Chem 136:44–49

    Article  PubMed  Google Scholar 

  • Gagoś M, Czernel G, Kaminski DM, Kostro K (2011) Spectroscopic studies of amphotericin B-Cu(2+) complexes. Biometals 24:915–922

    Google Scholar 

  • Gold W, Stout HA, Pagano JF, Donovick R (1956) Amphotericins A and B, antifungal antibiotics produced by a Streptomycete. I. In vitro studies. Antibiot Ann 3:579–585

    Google Scholar 

  • Gruszecki WI, Gagos M, Kernen P (2002) Polyene antibiotic amphotericin B in monomolecular layers: spectrophotometric and scanning force microscopic analysis. FEBS Lett 524:92–96

    Article  PubMed  CAS  Google Scholar 

  • Gruszecki WI, Luchowski R, Gagoś M, Arczewska M, Sarkar P, Hereć M, Mysliwa-Kurdziel B, Strzalka K, Gryczynski I, Gryczynski Z (2009) Molecular organization of antifungal antibiotic amphotericin B in lipid monolayers studied by means of Fluorescence Lifetime Imaging Microscopy. Biophys Chem 143:95–101

    Article  PubMed  CAS  Google Scholar 

  • Hamilton-Miller JM (1974) Fungal sterols and the mode of action of the polyene antibiotics. Adv Appl Microbiol 17:109–134

    Article  PubMed  CAS  Google Scholar 

  • Hartsel SC, Hatch C, Ayenew W (1993) How does amphotericin B work?: studies on model membrane systems. J Liposome Res 3:377–408

    Article  CAS  Google Scholar 

  • Herve M, Debouzy JC, Borowski E, Cybulska B, Gary-Bobo CM (1989) The role of the carboxyl and amino groups of polyene macrolides in their interactions with sterols and their selective toxicity. A 31P-NMR study. Biochim Biophys Acta 980:261–272

    Article  CAS  Google Scholar 

  • Iqbal Z, Weidekamm E (1979) Pre-resonance Raman spectra and conformations of nystatin in powder, solution and phospholipid-cholesterol multilayers. Biochim Biophys Acta 555:426–435

    Article  PubMed  CAS  Google Scholar 

  • Kasha M (1963) Energy transfer mechanisms and the molecular exciton model for molecular aggregates. Radiat Res 20:55–71

    Article  PubMed  CAS  Google Scholar 

  • Kasha M, Rawls HR, Ashraf El-Bayoumi M (1965) The exciton model in molecular spectroscopy. Pure Appl Chem 11:371–392

    Article  CAS  Google Scholar 

  • Lewis EN, Kalasinsky VF, Levin IW (1988) Quantitative determination of impurities in polyene antibiotics: Fourier transform Raman spectra of nystatin, amphotericin A, and amphotericin B. Anal Chem 60:2306–2309

    Article  PubMed  CAS  Google Scholar 

  • Lewis RN, McElhaney RN, Monck MA, Cullis PR (1994a) Studies of highly asymmetric mixed-chain diacyl phosphatidylcholines that form mixed-interdigitated gel phases: Fourier transform infrared and 2H NMR spectroscopic studies of hydrocarbon chain conformation and orientational order in the liquid-crystalline state. Biophys J 67:197–207

    Article  PubMed  CAS  Google Scholar 

  • Lewis RN, McElhaney RN, Pohle W, Mantsch HH (1994b) Components of the carbonyl stretching band in the infrared spectra of hydrated 1,2-diacylglycerolipid bilayers: a reevaluation. Biophys J 67:2367–2375

    Article  PubMed  CAS  Google Scholar 

  • Mazerski J, Grzybowska J, Borowski E (1990) Influence of net charge on the aggregation and solubility behaviour of amphotericin B and its derivatives in aqueous media. Eur Biophys J 18:159–164

    Article  PubMed  CAS  Google Scholar 

  • Mazerski J, Bolard J, Borowski E (1995) Effect of the modifications of ionizable groups of amphotericin B on its ability to form complexes with sterols in hydroalcoholic media. Biochim Biophys Acta 1236:170–176

    Article  PubMed  Google Scholar 

  • Mendelsohn R, Van Holten RW (1979) Zeaxanthin ([3R,3′R]-beta, beta-carotene-3-3′diol) as a resonance Raman and visible absorption probe of membrane structure. Biophys J 27:221–235

    Article  PubMed  CAS  Google Scholar 

  • Minones J Jr, Carrera C, Dynarowicz-Łątka P, Minones J, Conde O, Seoane R, Rodriguez Patino JM (2001) Orientational changes of amphotericin B in Langmuir monolayers observed by Brewster angle microscopy. Langmuir 17:1477–1482

    Article  CAS  Google Scholar 

  • Paquet MJ, Fournier I, Barwicz J, Tancrede P, Auger M (2002) The effects of amphotericin B on pure and ergosterol- or cholesterol-containing dipalmitoylphosphatidylcholine bilayers as viewed by 2H NMR. Chem Phys Lipids 119:1–11

    Article  PubMed  CAS  Google Scholar 

  • Readio JD, Bittman R (1982) Equilibrium binding of amphotericin B and its methyl ester and borate complex to sterols. Biochim Biophys Acta 685:219–224

    Article  PubMed  CAS  Google Scholar 

  • Rey-Gomez-Serranillos I, Dynarowicz-Łątka P, Minones J Jr, Seoane R (2001) Desorption of amphotericin B from mixed monolayers with cholesterol at the air/water interface. J Colloid Interface Sci 234:351–355

    Article  PubMed  CAS  Google Scholar 

  • Ridente Y, Aubard J, Bolard J (1995) Surface-enhanced resonance Raman and circular dichroism spectra of amphotericin B and its methylester derivative in silver colloidal solutions. Biospectroscopy 2:1–8

    Article  Google Scholar 

  • Rimai L, Heyde ME, Gill D (1973) Vibrational spectra of some carotenoids and related linear polyenes. A Raman spectroscopic study. J Am Chem Soc 95:4493–4501

    Article  PubMed  CAS  Google Scholar 

  • Saint-Pierre-Chazalet M, Thomas C, Dupeyarat M, Gary-Bobo CM (1988) Amphotericin B-sterol complex formation and competition with egg phosphatidylcholine: a monolayer study. Biochim Biophys Acta 944:477–486

    Article  PubMed  CAS  Google Scholar 

  • Schwartzman G, Asher I, Folen V, Brannon W, Taylor J (1978) Ambiguities in IR and X-ray characterization of amphotericin B. J Pharm Sci 67:398–400

    Article  PubMed  CAS  Google Scholar 

  • Seoane JR, Vila Romeu N, Miñones J, Conde O, Dynarowicz P, Casas M (1997) The behavior of amphotericin B monolayers at the air/water interface. Prog Colloid Polym Sci 105:173–179

    Article  CAS  Google Scholar 

  • Seoane JR, Minones J, Conde O, Casas M, Iribarnegaray E (1998) Molecular organisation of amphotericin B at the air-water interface in the presence of sterols: a monolayer study. Biochim Biophys Acta 1375:73–83

    Article  PubMed  CAS  Google Scholar 

  • Sternal K, Czub J, Baginski M (2004) Molecular aspects of the interaction between amphotericin B and a phospholipid bilayer: molecular dynamics studies. J Mol Model (Online) 10:223–232

    Article  CAS  Google Scholar 

  • Sykora JC, Neely WC, Vodyanoy V (2004) Solvent effects on amphotericin B monolayers. J Colloid Interface Sci 269:499–502

    Article  PubMed  CAS  Google Scholar 

  • Zotchev SB (2003) Polyene macrolide antibiotics and their applications in human therapy. Curr Med Chem 10:211–223

    PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This research was financed by the Ministry of Education and Science of Poland from the budget funds for science in the years 2008–2011 within the research project N N401 015035.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mariusz Gagoś.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gagoś, M., Arczewska, M. FTIR spectroscopic study of molecular organization of the antibiotic amphotericin B in aqueous solution and in DPPC lipid monolayers containing the sterols cholesterol and ergosterol. Eur Biophys J 41, 663–673 (2012). https://doi.org/10.1007/s00249-012-0842-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00249-012-0842-4

Keywords

Navigation