Skip to main content
Log in

Quantitative prediction of the arrhythmogenic effects of de novo hERG mutations in computational models of human ventricular tissues

  • Original Paper
  • Published:
European Biophysics Journal Aims and scope Submit manuscript

Abstract

Mutations to hERG which result in changes to the rapid delayed rectifier current I Kr can cause long and short QT syndromes and are associated with an increased risk of cardiac arrhythmias. Experimental recordings of I Kr reveal the effects of mutations at the channel level, but how these changes translate to the cell and tissue levels remains unclear. We used computational models of human ventricular myocytes and tissues to predict and quantify the effects that de novo hERG mutations would have on cell and tissue electrophysiology. Mutations that decreased I Kr maximum conductance resulted in an increased cell and tissue action potential duration (APD) and a long QT interval on the electrocardiogram (ECG), whereas those that caused a positive shift in the inactivation curve resulted in a decreased APD and a short QT. Tissue vulnerability to re-entrant arrhythmias was correlated with transmural dispersion of repolarisation, and any change to this vulnerability could be inferred from the ECG QT interval or T wave peak-to-end time. Faster I Kr activation kinetics caused cell APD alternans to appear over a wider range of pacing rates and with a larger magnitude, and spatial heterogeneity in these cellular alternans resulted in discordant alternans at the tissue level. Thus, from channel kinetic data, we can predict the tissue-level electrophysiological effects of any hERG mutations and identify how the mutation would manifest clinically, as either a long or short QT syndrome with or without an increased risk of alternans and re-entrant arrhythmias.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Abbreviations

APD:

Action potential duration

cNBD:

Cyclic nucleotide binding domain

ECG:

Electrocardiogram

hERG:

Human ether-a-go-go-related gene

I Kr :

Rapid delayed rectifier potassium current

LQTS:

Long QT syndrome

M:

Midmyocardial

PAS:

Per-Arnt-Sim

SQTS:

Short QT syndrome

TDR:

Transmural dispersion of repolarisation

VF:

Ventricular fibrillation

WT:

Wild type

References

  • Akhavan A, Atanasiu R, Noguchi T, Han W, Holder N, Shrier A (2005) Identification of the cyclic-nucleotide-binding domain as a conserved determinant of ion-channel cell-surface localization. J Cell Sci 118:2803–2812

    Article  PubMed  CAS  Google Scholar 

  • Al-Owais M, Bracey K, Wray D (2009) Role of intracellular domains in the function of the herg potassium channel. Eur Biophys J 38:569–576

    Article  PubMed  CAS  Google Scholar 

  • Antzelevitch C, Pollevick GD, Cordeiro JM, Casis O, Sanguinetti MC, Aizawa Y, Guerchicoff A, Pfeiffer R, Oliva A, Wollnik B, Gelber P, Bonaros EP, Burashnikov E, Wu Y, Sargent JD, Schnikel S, Oberheiden R, Bhatia A, Hsu L-F, Haissaguerre M, Schimpf R, Borggrefe M, Wolpert C (2007a) Loss-of-function mutations in the cardiac calcium channel underlie a new clinical entity characterized by ST-segment elevation, short QT intervals, and sudden cardiac death. Circulation 115:442–449

    Google Scholar 

  • Antzelevitch C, Sicouri S, Di Diego JM, Burashnikov A, Viskin S, Shimizu W, Yan GX, Kowey P, Zhang L (2007b) Does Tpeak-Tend provide an index of transmural dispersion of repolarization? Heart Rhythm 4:1114–1119

    Article  PubMed  Google Scholar 

  • Arini PD, Bertran GC, Valverde ER, Laguna P (2008) T-wave width as an index of ventricular repolarization dispersion: evaluation in an isolated rabbit heart model. Biomed Signal Proc Cont 3:67–77

    Article  Google Scholar 

  • Benson AP, Halley G, Li P, Tong WC, Holden AV (2007) Virtual cell and tissue dynamics of ectopic activation of the ventricles. Chaos 17:015105

    Article  PubMed  Google Scholar 

  • Benson AP, Aslanidi OV, Zhang H, Holden AV (2008) The canine virtual ventricular wall: a platform for dissecting pharmacological effects on propagation and arrhythmogenesis. Prog Biophys Mol Biol 96:187–208

    Article  PubMed  CAS  Google Scholar 

  • Benson AP, Al-Owais M, Tong WC, Holden AV (2009) HERG effects on ventricular action potential duration and tissue vulnerability: a computational study. Lect Notes Comput Sci 5528:172–181

    Article  Google Scholar 

  • Berecki G, Zegers JG, Verkerk AO, Bhuiyan ZA, De Jonge B, Veldkemp MW, Wilders R, Van Ginneken ACG (2005) HERG channel (dys)function revealed by dynamic action potential clamp technique. Biophys J 88:56–578

    Article  Google Scholar 

  • Brugada R, Hong K, Dumaine R, Cordeiro J, Gaita F, Borggrefe M, Menendez TM, Brugada J, Pollevick GD, Wolpert C, Burashnikov E, Matsuo K, Sheng Wu Y, Guerchicoff A, Bianchi F, Giustetto C, Schimpf R, Brugada P, Antzelevitch C (2004) Sudden death associated with short-QT syndrome linked to mutations in HERG. Circulation 109:30–35

    CAS  Google Scholar 

  • Chen J, Zou A, Spawski I, Keating M, Sanguinetti MC (1999) Long QT syndrome-associated mutations in the Per-Arnt-Sim (PAS) domain of HERG potassium channels accelerate channel deactivation. J Biol Chem 274:10113–10118

    Article  PubMed  CAS  Google Scholar 

  • Clayton RH, Bernus OV, Cherry EM, Dierckx H, Fenton FH, Mirabella L, Panfilov AV, Sachse FB, Seeman G, Zhang H (2011) Models of cardiac tissue electrophysiology: progress, challenges and open questions. Prog Biophys Mol Biol 104:22–48

    Article  CAS  Google Scholar 

  • Cui J, Kagan A, Qin D, Mathew J, Malman TF, McDonald TV (2001) Analysis of the cyclic nucleotide binding domain of the HERG potassium channel and interactions with KCNE2. J Biol Chem 276:17244–17251

    Article  PubMed  CAS  Google Scholar 

  • Durrer D, Van Dam RT, Freud GE, Janse MJ, Meijier FL, Arzbaecher RC (1970) Total excitation of the isolated human heart. Circulation 41:899–912

    CAS  Google Scholar 

  • Fink M, Giles WR, Noble D (2006) Contributions of inwardly rectifying K+ currents to repolarization assessed using mathematical models of human ventricular myocytes. Philos Trans R Soc A 364:1207–1222

    Article  PubMed  CAS  Google Scholar 

  • Finlayson K, Witchel HJ, McCulloch J, Starkey J (2004) Acquired QT interval prolongation and HERG: implications for drug discovery and development. Eur J Pharmacol 500:129–142

    Article  PubMed  CAS  Google Scholar 

  • Fossa A, Wisialowski T, Wolfgang E, Wang E, Avery M, Raunig DL, Fermini B (2004) Differential effects of HERG blocking agents on cardiac electrical alternans in guinea pig. Eur J Pharmacol 486:209–221

    Article  PubMed  CAS  Google Scholar 

  • Gilbert SH, Benson AP, Li P, Holden AV (2007) Regional localisation of left ventricular sheet structure: integration with current models of cardiac fibre, sheet and band structure. Eur J Cardiothorac Surg 32:231–249

    Article  PubMed  Google Scholar 

  • Gintant GA, Limberis JT, McDermott JS, Wegner CD, Cox BF (2001) The canine Purkinje fiber: an in vitro model system for acquired long QT syndrome and drug-induced arrhythmogenesis. J Cardiovasc Pharm 37:607–618

    Article  CAS  Google Scholar 

  • Glukov AV, Fedorov VV, Lou Q, Ravikumar VK, Kalish PW, Schuessler RB, Moazami N, Efimiov IR (2010) Transmural dispersion of repolarisation in failing and nonfailing human ventricle. Circ Res 106:981–991

    Article  Google Scholar 

  • Grandi E, Pasqualini FS, Bers DM (2009) A novel computational model of the human ventricular action potential and Ca transient. J Mol Cell Cardiol 48:112–121

    Article  PubMed  Google Scholar 

  • Hund TJ, Kucera JP, Otani NF, Rudy Y (2001) Ionic charge conservation and long-term steady state in the Luo-Rudy dynamic cell model. Biophys J 281:3324–3331

    Article  Google Scholar 

  • Iyer V, Mazhari R, Winslow RL (2004) A computational model of the human left-ventricular epicardial myocyte. Biophys J 87:1507–1525

    Article  PubMed  CAS  Google Scholar 

  • Jalife J (2000) Ventricular fibrillation: mechanisms of initiation and maintenance. Annu Rev Physiol 62:25–50

    Article  PubMed  CAS  Google Scholar 

  • Kannankeril PJ, Roden DM (2007) Drug-induced long QT and torsade de pointes: recent advances. Curr Opin Cardiol 22:39–43

    Article  PubMed  Google Scholar 

  • Lawrence CL, Pollard CE, Hammond TG, Valentin J-P (2005) Nonclinical proarrhythmia models: predicting torsades de pointes. J Pharmacol Toxicol 52:46–59

    Article  CAS  Google Scholar 

  • Lehmann-Horn F, Jurkat-Rott K (1999) Voltage-gated ion channels and hereditary disease. Physiol Rev 79:1317–1372

    PubMed  CAS  Google Scholar 

  • Martínez JP, Almeida R, Olmos S, Rocha AP, Laguna P (2004) A wavelet-based ECG delineator: evaluation on standard databases. IEEE Trans Biomed Eng 51:570–581

    Article  Google Scholar 

  • Morita H, Wu J, Zipes DP (2000) The QT syndromes: long and short. Lancet 372:750–763

    Article  Google Scholar 

  • Numaguchi H, Mullins FM, Johnson JP, Johns DC, Po SS, Yang IC-H, Tomaselli GF, Balser JR (2000) Probing the interactions between inactivation gating and D-sotalol block of HERG. Circ Res 287:1012–1018

    Google Scholar 

  • Pastore JM, Girouard SD, Laurita KR, Akar FG, Rosenbaum DS (1999) Mechanism linking T-wave alternans to the genesis of cardiac fibrillation. Circulation 99:1385–1394

    CAS  Google Scholar 

  • Peitersen T, Grunnet M, Benson AP, Holden AV, Holstein-Rathlou N-H, Olesen S-P (2008) Computational analysis of the effects of the hERG channel opener NS1643 in a human ventricular cell model. Heart Rhythm 5:734–741

    Article  PubMed  Google Scholar 

  • Plonsey R, Barr RC (1988) Bioelectricity: a quantitative approach. Plenum, New York

    Google Scholar 

  • Press WH, Teukolsky SA, Vetterling WT, Flannery BP (2009) Numerical recipes: the art of scientific computing, 3rd ed. Cambridge University Press, Cambridge

    Google Scholar 

  • Priebe L, Beuckelmann DJ (1998) Simulation study of cellular electric properties in heart failure. Circulation 82:1206–1223

    PubMed  CAS  Google Scholar 

  • Puisieux FL, Adamantidis MM, Dumotier BM, Dupuis BA (1996) Cisapride-induced prolongation of cardiac action potential and early afterdepolarizations in rabbit Purkinje fibres. Br J Pharmacol 117:1377–1379

    PubMed  CAS  Google Scholar 

  • Qu Z, Garfinkel A (1999) An advanced algorithm for solving partial differential equations in cardiac conduction. IEEE Trans Biomed Eng 46:1166–1168

    Article  CAS  Google Scholar 

  • Qu Z, Garfinkel A, Chen P-S, Weiss JN (2000) Mechanisms of discordant alternans and induction of reentry in simulated cardiac tissue. Circulation 102:1664–1670

    CAS  Google Scholar 

  • Recanatini M, Cavalli A, Masetti M (2008) Modeling HERG and its interactions with drugs: recent advances in light of current potassium channel simulations. Chem Med Chem 3:523–535

    Article  PubMed  CAS  Google Scholar 

  • Rush S, Larsen H (1978) A practical algorithm for solving dynamic membrane equations. IEEE Trans Biomed Eng 25:389–392

    Article  CAS  Google Scholar 

  • Sampson KJ, Iyer V, Marks AR, Kass RS (2010) A computational model of Purkinje fibre single cell electrophysiology: implications for the long QT syndrome. J Physiol 588:2643–2655

    Article  PubMed  CAS  Google Scholar 

  • Sanguinetti MC, Jiang C, Curran ME, Keating MT (1995) A mechanistic link between an inherited and an acquired cardiac arrhythmia. Cell 81:299–307

    CAS  Google Scholar 

  • Satler CA, Walsh EP, Vesely MR, Plummer MH, Ginsburg GS, Jacob HJ (1996) Novel missense mutation in the cyclic nucleotide-binding domain of HERG causes long QT syndrome. Am J Med Genet 65:27–35

    Article  PubMed  CAS  Google Scholar 

  • Starmer CF, Biktashev VN, Romashko DN, Stepanov MR, Makarova ON, Krinsky VI (1993) Vulnerability in an excitable medium: analytical and numerical studies of initiating unidirectional propagation. Biophys J 65:1775–1787

    Article  PubMed  CAS  Google Scholar 

  • Stewart P, Aslanidi OV, Noble D, Noble PJ, Boyett MR, Zhang H (2009) Mathematical models of the electrical action potential of Purkinje fibre cells. Philos Trans Roy Soc A 367:2225–2255

    Article  CAS  Google Scholar 

  • Ten Tusscher KHWJ, Panfilov AV (2006) Alternans and spiral breakup in a human ventricular tissue model. Am J Physiol 291:H1088–H1100

    CAS  Google Scholar 

  • Ten Tusscher KHWJ, Noble D, Noble PJ, Panfilov AV (2004) A model for human ventricular tissue. Am J Physiol 286:H1573–H1589

    CAS  Google Scholar 

  • Thomas D, Kiehn J, Katus HA, Karle CA (2003) Defective protein trafficking in hERG-associated hereditary long QT syndrome (LQT2): molecular mechanisms and restoration of intracellular protein processing. Cardiovasc Res 60:235–241

    Article  PubMed  CAS  Google Scholar 

  • Tseng GN (2001) I(Kr): the hERG channel. J Mol Cell Cardiol 33:835–849

    Article  PubMed  CAS  Google Scholar 

  • Walton RD, Benoist D, Hyatt CJ, Gilbert SH, White E, Bernus O (2010) Dual excitation wavelength epi-fluorescence imaging of transmural electrophysiological properties in intact hearts. Heart Rhythm 7:1843–1849

    Article  PubMed  Google Scholar 

  • Weiss JN, Karma A, Shiferaw Y, Chen P-S, Garfinkel A, Qu Z (2006) From pulses to pulseless: the saga of cardiac alternans. Circ Res 98:1244–1253

    Article  PubMed  CAS  Google Scholar 

  • Zeng J, Laurita KR, Rosenbaum DS, Rudy Y (1995) Two components of the delayed rectifier K+ current in ventricular myocytes of the guinea pig type. Theoretical formulation and their role in repolarization. Circ Res 77:140–152

    PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the European Union through the BioSim Network of Excellence (contract number LSHB-CT-2004-005137). A.P.B. is supported by a Medical Research Council special training fellowship in biomedical informatics (G0701776). We acknowledge Professor Denis Wray (deceased), who initiated the research presented in this paper with support from the British Heart Foundation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alan P. Benson.

Additional information

A. P. Benson and M. Al-Owais have contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Benson, A.P., Al-Owais, M. & Holden, A.V. Quantitative prediction of the arrhythmogenic effects of de novo hERG mutations in computational models of human ventricular tissues. Eur Biophys J 40, 627–639 (2011). https://doi.org/10.1007/s00249-010-0663-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00249-010-0663-2

Keywords

Navigation