Skip to main content

Advertisement

Log in

QCM-D fingerprinting of membrane-active peptides

  • Original Paper
  • Published:
European Biophysics Journal Aims and scope Submit manuscript

Abstract

The increasing prevalence of antibiotic-resistant bacteria is becoming a public health crisis. Antimicrobial peptides (AMPs) are a promising solution, because bacterial resistance is less likely. Quartz crystal microbalance with dissipation monitoring (QCM-D) is a versatile and valuable technique for investigation of these peptides. This article looks at the different approaches to the interpretation of QCM-D data, showing how to extract the maximum information from the data. Five AMPs of diverse charge, length and activity are used as case studies: caerin 1.1 wild-type, two caerin 1.1 mutants (Gly15Gly19-caerin 1.1 and Ala15Ala19-caerin 1.1), aurein 1.2 and oncocin. The interaction between the AMP and a 1,2-dimyristoyl-sn-glycero-3-phosphocholine (DMPC) membrane is analysed inter alia using frequency–dissipation plots (∆f–∆D plots) to ascertain the mechanism of action of the AMP. The ∆f–∆D plot can then be used to provide a fingerprint for the AMP–membrane interaction. Building up a database of these fingerprints for all known AMPs will enable the relationship between AMP structure and membrane activity to be better understood, hopefully leading to the future development of antibiotics without bacterial resistance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Abbreviations

AMP:

Antimicrobial peptide

QCM-D:

Quartz crystal microbalance with dissipation monitoring

DMPC:

1,2-Dimyristoyl-sn-glycero-3-phosphocholine

MPA:

3-Mercaptopropionic acid

DMPG:

1,2-Dimyristoyl-sn-glycero-3-phospho-rac-(1-glycerol)

PBS:

Phosphate buffered saline

AFM:

Atomic force microscopy

References

  • Ambroggio EE, Separovic F, Bowie JH, Fidelio GD, Bagatolli LA (2005) Direct visualization of membrane leakage induced by the antibiotic peptides: maculatin, citropin, and aurein. Biophys J 89:1874–1881

    Article  PubMed  CAS  Google Scholar 

  • Balla MS, Bowie JH, Separovic F (2004) Solid-state NMR study of antimicrobial peptides from Australian frogs in phospholipid membranes. Eur Biophys J 33:109–116

    Article  PubMed  CAS  Google Scholar 

  • Briand E, Humblot V, Pradier C-M, Kasemo B, Svedhem S (2010) An OEGylated thiol monolayer for the tethering of liposomes and the study of liposome interactions. Talanta 81:1153–1161

    Article  PubMed  CAS  Google Scholar 

  • Christ K, Wiedemann I, Bakowsky U, Sahl HG, Bendas G (2007) The role of lipid II in membrane binding of and pore formation by nisin analyzed by two combined biosensor techniques. Biochim Biophys Acta 1768:694–704

    Article  PubMed  CAS  Google Scholar 

  • Gordon YJ, Romanowski EG, McDermott AM (2005) A review of antimicrobial peptides and their therapeutic potential as anti-infective drugs. Curr Eye Res 30:505–515

    Article  PubMed  CAS  Google Scholar 

  • Höök F, Kasemo B (2001) Variations in coupled water, viscoelastic properties, and film thickness of a Mefp-1 protein film during adsorption and cross-linking: a quartz crystal microbalance with dissipation monitoring, ellipsometry, and surface plasmon resonance study. Anal Chem 73:5796–5804

    Article  PubMed  Google Scholar 

  • IDSA (2004) Bad bugs, no drugs: as antibiotic discovery stagnates, a public health crisis brews. http://www.idsociety.org/. Accessed 28 Sept 2010

  • Kanazawa KK, Gordon JG (1985) frequency of a quartz microbalance in contact with liquid. Anal Chem 57:1770–1771

    Article  CAS  Google Scholar 

  • Katz ML, Mueller LV, Polyakov M, Weinstock SF (2006) Where have all the antibiotic patents gone? Nat Biotechnol 24:1529–1531

    Article  PubMed  CAS  Google Scholar 

  • Knappe D, Piantavigna S, Hansen A, Mechler A, Binas A, Nolte O, Martin LL, Hoffmann R (2010) Oncocin (VDKPPYLPRPRPPRRIYNR-NH2): a novel antibacterial peptide optimized against gram-negative human pathogens. J Med Chem 53:5240–5247

    Article  PubMed  CAS  Google Scholar 

  • Lam KLH, Ishitsuka Y, Cheng Y, Chien K, Waring AJ, Lehrer RI, Lee KYC (2006) Mechanism of supported membrane disruption by antimicrobial peptide protegrin-1. J Phys Chem B 110:21282–21286

    Article  PubMed  CAS  Google Scholar 

  • Lee D, Ashcraft N, Verploegen E, Pashkovski E, Weitz DA (2009) Permeability of model stratum corneum lipid membrane measured using quartz crystal microbalance. Langmuir 25:5762–5766

    Article  PubMed  CAS  Google Scholar 

  • Marcotte I, Wegener KL, Lam Y-H, Chia BCS, de Planque MRR, Bowie JH, Auger M, Separovic F (2003) Interaction of antimicrobial peptides from Australian amphibians with lipid membranes. Chem Phys Lipids 122:107–120

    Article  PubMed  CAS  Google Scholar 

  • Mechler A, Praporski S, Atmuri K, Boland M, Separovic F, Martin LL (2007) Specific and selective peptide-membrane interactions revealed using quartz crystal microbalance. Biophys J 93:3907–3916

    Article  PubMed  CAS  Google Scholar 

  • Mechler A, Praporski S, Piantavigna S, Heaton SM, Hall KN, Aguilar M-I, Martin LL (2009) Structure and homogeneity of pseudo-physiological phospholipid bilayers and their deposition characteristics on carboxylic acid terminated self-assembled monolayers. Biomaterials 30:682–689

    Article  PubMed  CAS  Google Scholar 

  • Nielsen SB, Otzen DE (2010) Impact of the antimicrobial peptide Novicidin on membrane structure and integrity. J Colloid Interface Sci 345:248–256

    Article  CAS  Google Scholar 

  • Nilebäck E, Westberg F, Deinum J, Svedhem S (2010) Viscoelastic sensing of conformational changes in plasminogen induced upon binding of low molecular weight compounds. Anal Chem 82:8374–8376

    Article  PubMed  Google Scholar 

  • Papo N, Shai Y (2003) Exploring peptide membrane interaction using surface plasmon resonance: differentiation between pore formation versus membrane disruption by lytic peptides. Biochemistry 42:458–466

    Article  PubMed  CAS  Google Scholar 

  • Peschel A, Sahl H-G (2006) The co-evolution of host cationic antimicrobial peptides and microbial resistance. Nat Microbiol 4:529–536

    Article  CAS  Google Scholar 

  • Piantavigna S, Czihal P, Mechler A, Richter M, Hoffmann R, Martin LL (2009) Cell penetrating apidaecin peptide interactions with biomimetic phospholipid membranes. Int J Pept Res Ther 15:139–146

    Article  CAS  Google Scholar 

  • Powers JPS, Hancock REW (2003) The relationship between peptide structure and antibacterial activity. Peptides 24:1681–1691

    Article  PubMed  CAS  Google Scholar 

  • Pukala TL, Brinkworth CS, Carver JA, Bowie JH (2004) Investigating the importance of the flexible hinge in caerin 1.1: solution structures and activity of two synthetically modified caerin peptides. Biochemistry 43:937–944

    Article  PubMed  CAS  Google Scholar 

  • Rickert J, Brecht A, Göpel W (1997) QCM operation in liquids: constant sensitivity during formation of extended protein multilayers by affinity. Anal Chem 69:1441–1448

    Article  PubMed  CAS  Google Scholar 

  • Rodahl M, Kasemo B (1996) On the measurement of thin liquid overlayers with the quartz-crystal microbalance. Sens Actuators A Phys 54:448–456

    Article  Google Scholar 

  • Rodahl M, Höök F, Krozer A, Brzezinski P, Kasemo B (1995) Quartz crystal microbalance setup for frequency and Q-factor measurements in gaseous and liquid environments. Rev Sci Instrum 66:3924–3930

    Article  CAS  Google Scholar 

  • Rodahl M, Höök F, Fredriksson C, Keller CA, Krozer A, Brzezinski P, Voinova M, Kasemo B (1997) Simultaneous frequency and dissipation factor QCM measurements of biomolecular adsorption and cell adhesion. Faraday Discuss 107:229–246

    Article  PubMed  CAS  Google Scholar 

  • Rozek T, Wegener KL, Bowie JH, Olver IN, Carver JA, Wallace JC, Tyler MJ (2000) The antibiotic and anticancer active aurein peptides from the Australian bell frogs Litoria aurea and Litoria raniformis. Eur J Biochem 267:5330–5341

    Article  PubMed  CAS  Google Scholar 

  • Sauerbrey G (1959) The use of quartz oscillators for weighing thin layers and for microweighing. Z Phys 155:206–222

    Article  CAS  Google Scholar 

  • Shai Y (1999) Mechanism of the binding, insertion and destabilization of phospholipid bilayer membranes by K-helical antimicrobial and cell non-selective membrane-lytic peptides. Biochim Biophys Acta 1462:55–70

    Article  PubMed  CAS  Google Scholar 

  • Shai Y (2002) Mode of action of membrane active antimicrobial peptides. Biopolymers 66:236–248

    Article  PubMed  CAS  Google Scholar 

  • Sherman PJ, Jackway RJ, Gehman JD, Praporski S, McCubbin GA, Mechler A, Martin LL, Separovic F, Bowie JH (2009) solution structure and membrane interactions of the antimicrobial peptide fallaxidin 4.1a: an NMR and QCM study. Biochemistry 48:11892–11901

    Article  PubMed  CAS  Google Scholar 

  • Stone DJM, Bowie JH, Tyler MJ, Wallace JC (1992) The structure of caerin 1.1, a novel antibiotic peptide from Australian tree frogs. J Chem Soc, Chem Commun (17):1224–1225

  • VanCompernolle SE, Taylor RJ, Oswald-Richter K, Jiang J, Youree BE, Bowie JH, Tyler MJ, Conlon JM, Wade D, Aiken C, Dermody TS, KewalRamani VN, Rollins-Smith LA, Unutmaz D (2005) Antimicrobial peptides from amphibian skin potently inhibit human immunodeficiency virus infection and transfer of virus from dendritic cells to T cells. J Virol 79:11598–11606

    Article  PubMed  CAS  Google Scholar 

  • Voinova MV, Rodahl M, Jonson M, Kasemo B (1999) Viscoelastic acoustic response of layered polymer films at fluid-solid interfaces: continuum mechanics approach. Phys Scr 59:391–396

    Article  CAS  Google Scholar 

  • Wong H, Bowie JH, Carver JA (1997) The solution structure and activity of caerin 1.1, an antimicrobial peptide from the Australian green tree frog, Litoria splendida. Eur J Biochem 247:545–557

    Article  PubMed  CAS  Google Scholar 

  • Zasloff M (2002) Antimicrobial peptides of multicellular organisms. Nature 415:389–395

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lisandra L. Martin.

Additional information

Membrane-active peptides: 455th WE-Heraeus-Seminar and AMP 2010 Workshop.

Rights and permissions

Reprints and permissions

About this article

Cite this article

McCubbin, G.A., Praporski, S., Piantavigna, S. et al. QCM-D fingerprinting of membrane-active peptides. Eur Biophys J 40, 437–446 (2011). https://doi.org/10.1007/s00249-010-0652-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00249-010-0652-5

Keywords

Navigation