Skip to main content

Advertisement

Log in

Quantification of the effect of glycocalyx condition on membrane receptor interactions using an acoustic wave sensor

  • Biophysics Letter
  • Published:
European Biophysics Journal Aims and scope Submit manuscript

Abstract

The effect of the cell glycocalyx on the binding of a membrane receptor, class I major histocompatibility complex (MHC) human leukocyte antigen (HLA)-A2, to an immobilized anti-HLA antibody was investigated using an acoustic sensor based on a Love wave geometry. The enzyme neuraminidase was used to remove sialic acid residues from the cell glycocalyx. Real-time measurements of the amplitude of the acoustic wave showed that treatment with neuraminidase facilitates HLA/anti-HLA-mediated cell attachment via a 3.6-fold increase of the two-dimensional (2D) binding constant of the interaction. This could be attributed to better approach of binding partners due to favorable condition of the desialylated glycocalyx. The results underline the importance of microtopological factors in membrane receptor binding and reveal the potential of the Love wave sensor and 2D binding parameters for studying cell–substrate binding events.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Notes

  1. The 2D kinetics and affinity of the HLA/anti-HLA interaction for untreated LG2 cells had previously been calculated as k a = 1.15 × 10−5 μm2 s−1 per molecule, k d = 2.07 × 10−5 s−1, and K A = 0.556 μm2 per molecule (Saitakis et al. 2008). In that work, the kinetic analysis was performed for real-time acoustic data up to the point of buffer exchange. In the current study, we included data up to the point of signal equilibrium, since there was still HLA/anti-HLA binding taking place on the sensor surface. We believe that this modification is justified, since it includes the whole real-time data for the association reaction.

References

  • Alon R, Chen S, Puri KD, Finger EB, Springer TA (1997) The kinetics of l-selectin tethers and the mechanics of selectin-mediated rolling. J Cell Biol 138:1169–1180

    Article  CAS  PubMed  Google Scholar 

  • Bell GI, Dembo M, Bongrand P (1984) Cell adhesion. Competition between nonspecific repulsion and specific bonding. Biophys J 45:1051–1064

    Article  CAS  PubMed  Google Scholar 

  • Bierer BE, Herrmann SH, Brown CS, Burakoff SJ, Golan DE (1987) Lateral mobility of class I histocompatibility antigens in B lymphoblastoid cell membranes: modulation by cross-linking and effect of cell density. J Cell Biol 105:1147–1152

    Article  CAS  PubMed  Google Scholar 

  • Bodnar A, Bacso Z, Jenei A, Jovin TM, Edidin M, Damjanovich S, Matko J (2003) Class I HLA oligomerization at the surface of B cells is controlled by exogenous beta(2)-microglobulin: implications in activation of cytotoxic T lymphocytes. Int Immunol 15:331–339

    Article  CAS  PubMed  Google Scholar 

  • Bromley SK, Iaboni A, Davis SJ, Whitty A, Green JM, Shaw AS, Weiss A, Dustin ML (2001) The immunological synapse and CD28-CD80 interactions. Nat Immunol 2:1159–1166

    Article  CAS  PubMed  Google Scholar 

  • Cooper MA (2002) Optical biosensors in drug discovery. Nat Rev Drug Discov 1:515–528

    Article  CAS  PubMed  Google Scholar 

  • Cooper MA (2006) Non-optical screening platforms: the next wave in labal-free screening? Drug Discov Today 11:1068–1074

    Article  CAS  PubMed  Google Scholar 

  • Cooper MA, Singleton VT (2007) A survey of the 2001 to 2005 quartz crystal microbalance biosensor literature: applications of acoustic physics to the analysis of biomolecular interactions. J Mol Recognit 20:154–184

    Article  CAS  PubMed  Google Scholar 

  • Dustin ML, Ferguson LM, Chan PY, Springer TA, Golan DE (1996) Visualization of CD2 interaction with LFA-3 and determination of the two-dimensional dissociation constant for adhesion receptors in a contact area. J Cell Biol 132:465–474

    Article  CAS  PubMed  Google Scholar 

  • Dustin ML, Golan DE, Zhu DM, Miller JM, Meier W, Davies EA, van der Merwe PA (1997) Low affinity interaction of human or rat T cell adhesion molecule CD2 with its ligand aligns adhering membranes to achieve high physiological affinity. J Biol Chem 272:30889–30898

    Article  CAS  PubMed  Google Scholar 

  • Dustin ML, Bromley SK, Davis MM, Zhu C (2001) Identification of self through two-dimensional chemistry and synapses. Annu Rev Cell Dev Biol 17:133–157

    Article  CAS  PubMed  Google Scholar 

  • Ergezen E, Hong S, Barbee KA, Lec R (2007) Real time monitoring of the effects of heparan sulfate proteoglycan (HSPG) and surface charge on the cell adhesion process using thickness shear mode (TSM) sensor. Biosens Bioelectron 22:2256–2260

    Article  CAS  PubMed  Google Scholar 

  • Fooksman DR, Gronvall GK, Tang Q, Edidin M (2006) Clustering class I MHC modulates sensitivity of T cell recognition. J Immunol 176:6673–6680

    CAS  PubMed  Google Scholar 

  • Fuster MM, Esko JD (2005) The sweet and sour of cancer: glycans as novel therapeutic targets. Nat Rev Cancer 5:526–542

    Article  CAS  PubMed  Google Scholar 

  • Gizeli E, Bender F, Rasmusson A, Saha K, Josse F, Cernosek R (2003) Sensitivity of the acoustic waveguide biosensor to protein binding as a function of the waveguide properties. Biosens Bioelectron 18:1399–1406

    Article  CAS  PubMed  Google Scholar 

  • Gronewold TM (2007) Surface acoustic wave sensors in the bioanalytical field: recent trends and challenges. Anal Chim Acta 603:119–128

    Article  CAS  PubMed  Google Scholar 

  • Heitmann V, Reiss B, Wegener J (2007) The quartz crystal microbalance in cell biology: basics and applications. In: Steinem C, Janshoff A (eds) Piezoelectric sensors. Springer, Berlin, pp 303–338

    Chapter  Google Scholar 

  • Hogan KT, Brown SL (1992) Localization and characterization of serologic epitopes on HLA-A2. Hum Immunol 33:185–192

    Article  CAS  PubMed  Google Scholar 

  • Hollingsworth MA, Swanson BJ (2004) Mucins in cancer: protection and control of the cell surface. Nat Rev Cancer 4:45–60

    Article  CAS  PubMed  Google Scholar 

  • Hong S, Ergezen E, Lec R, Barbee KA (2006) Real-time analysis of cell-surface adhesive interactions using thickness shear mode resonator. Biomaterials 27:5813–5820

    Article  CAS  PubMed  Google Scholar 

  • Huppa JB, Davis MM (2003) T-cell-antigen recognition and the immunological synapse. Nat Rev Immunol 3:973–983

    Article  CAS  PubMed  Google Scholar 

  • Janshoff A, Wegener J, Sieber M, Galla HJ (1996) Double-mode impedance analysis of epithelial cell monolayers cultured on shear wave resonators. Eur Biophys J 25:93–103

    Article  CAS  PubMed  Google Scholar 

  • Lakey JH, Raggett EM (1998) Measuring protein–protein interactions. Curr Opin Struct Biol 8:119–123

    Article  CAS  PubMed  Google Scholar 

  • Li J, Thielemann C, Reuning U, Johannsmann D (2005) Monitoring of integrin-mediated adhesion of human ovarian cancer cells to model protein surfaces by quartz crystal resonators: evaluation in the impedance analysis mode. Biosens Bioelectron 20:1333–1340

    Article  CAS  PubMed  Google Scholar 

  • Melzak K, Martin F, Newton MI, McHale G, Gizeli E (2002) Acoustic determination of polymer molecular weights and rotation times. J Polymer Sci B Polym Phys 40:1490–1495

    Article  CAS  Google Scholar 

  • Mitsakakis K, Tsortos A, Kondoh J, Gizeli E (2009) Parametric study of SH-SAW device response to various types of surface perturbations. Sens Actuators B Chem 138:408–416

    Article  Google Scholar 

  • Oh S, Belz GT, Eichelberger MC (2001) Viral neuraminidase treatment of dendritic cells enhances antigen-specific CD8(+) T cell proliferation, but does not account for the CD4(+) T cell independence of the CD8(+) T cell response during influenza virus infection. Virology 286:403–411

    Article  CAS  PubMed  Google Scholar 

  • Parham P, Brodsky FM (1981) Partial purification and some properties of BB7.2. A cytotoxic monoclonal antibody with specificity for HLA-A2 and a variant of HLA-A28. Hum Immunol 3:277–299

    Article  CAS  PubMed  Google Scholar 

  • Saha K, Bender F, Gizeli E (2003) Comparative study of IgG binding to proteins G and A: nonequilibrium kinetic and binding constant determination with the acoustic waveguide device. Anal Chem 75:835–842

    Article  CAS  PubMed  Google Scholar 

  • Saitakis M, Dellaporta A, Gizeli E (2008) Measurement of two-dimensional binding constants between cell-bound major histocompatibility complex and immobilized antibodies with an acoustic biosensor. Biophys J 95:4963–4971

    Article  CAS  PubMed  Google Scholar 

  • Saitakis M, Tsortos A, Gizeli E (2010) Probing the interaction of a membrane receptor with a surface-attached ligand using whole cells on acoustic biosensors. Biosens Bioelectron 25:1688–1693

    Article  CAS  PubMed  Google Scholar 

  • Shaw AS, Dustin ML (1997) Making the T cell receptor go the distance: a topological view of T cell activation. Immunity 6:361–369

    Article  CAS  PubMed  Google Scholar 

  • Springer TA (1990) Adhesion receptors of the immune system. Nature 346:425–434

    Article  CAS  PubMed  Google Scholar 

  • Tolentino TP, Wu J, Zarnitsyna VI, Fang Y, Dustin ML, Zhu C (2008) Measuring diffusion and binding kinetics by contact area FRAP. Biophys J 95:920–930

    Article  CAS  PubMed  Google Scholar 

  • Tsortos A, Papadakis G, Gizeli E (2008a) Shear acoustic wave biosensor for detecting DNA intrinsic viscosity and conformation: a study with QCM-D. Biosens Bioelectron 24:836–841

    Article  CAS  Google Scholar 

  • Tsortos A, Papadakis G, Mitsakakis K, Melzak KA, Gizeli E (2008b) Quantitative determination of size and shape of surface-bound DNA using an acoustic wave sensor. Biophys J 94:2706–2715

    Article  CAS  PubMed  Google Scholar 

  • van der Merwe PA, Barclay AN, Mason DW, Davies EA, Morgan BP, Tone M, Krishnam AK, Ianelli C, Davis SJ (1994) Human cell-adhesion molecule CD2 binds CD58 (LFA-3) with a very low affinity and an extremely fast dissociation rate but does not bind CD48 or CD59. Biochemistry 33:10149–10160

    Article  PubMed  Google Scholar 

  • Wegener J, Janshoff A, Galla HJ (1998) Cell adhesion monitoring using a quartz crystal microbalance: comparative analysis of different mammalian cell lines. Eur Biophys J 28:26–37

    Article  CAS  Google Scholar 

  • Wegener J, Seebach J, Janshoff A, Galla HJ (2000) Analysis of the composite response of shear wave resonators to the attachment of mammalian cells. Biophys J 78:2821–2833

    Article  CAS  PubMed  Google Scholar 

  • Wu J, Fang Y, Zarnitsyna VI, Tolentino TP, Dustin ML, Zhu C (2008) A coupled diffusion-kinetics model for analysis of contact-area FRAP experiment. Biophys J 95:910–919

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The authors would like to acknowledge the financial support of ELKE, University of Crete (research grant K. A. 2732) and the General Secretariat of Research and Technology (PENED 03ED623).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Electra Gizeli.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Saitakis, M., Gizeli, E. Quantification of the effect of glycocalyx condition on membrane receptor interactions using an acoustic wave sensor. Eur Biophys J 40, 209–215 (2011). https://doi.org/10.1007/s00249-010-0632-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00249-010-0632-9

Keywords

Navigation