Skip to main content
Log in

Mitochondrial creatine kinase interaction with cardiolipin-containing biomimetic membranes is a two-step process involving adsorption and insertion

  • Biophysics Letter
  • Published:
European Biophysics Journal Aims and scope Submit manuscript

Abstract

Mitochondrial creatine kinase (mtCK) binding to the mitochondrial inner membrane largely determines its biological functions in cellular energy homeostasis, mitochondrial physiology, and dynamics. The membrane binding mechanism is, however, not completely understood. Recent data suggest that a hydrophobic component is involved in mtCK binding to cardiolipin at the outer face of the inner mitochondrial membrane, in addition to the well known electrostatically driven process. In this manuscript, using an electrochemical method derived from alternating current polarography for differential capacity measurements, we distinctly reveal that protein–cardiolipin interaction has a two-step mechanism. For short incubation time, protein adsorption to the phospholipid charged headgroup was the only process detected, whereas on a longer time scale evidence of protein insertion was observed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Abbreviations

CK:

Creatine kinase

mtCK:

Mitochondrial creatine kinase

CL:

Cardiolipin

ac:

Alternating current

C :

Differential capacity

E :

Electrical potential

pzc:

Potential of zero charge

References

  • Clavilier J (1966) Simultaneous study of differential capacity-voltage and intensity-voltage curves of a polarizable electrochemical system by a recording method. C R Acad Sci Serie C 263:191–194

    CAS  Google Scholar 

  • Epand RF, Tokarska-Schlattner M, Schlattner U, Wallimann T, Epand RM (2007) Cardiolipin clusters and membrane domain formation induced by mitochondrial proteins. J Mol Biol 365:968–980

    Article  CAS  PubMed  Google Scholar 

  • Granjon T, Vacheron MJ, Vial C, Buchet R (2001) Mitochondrial creatine kinase binding to phospholipids decreases fluidity of membranes and promotes new lipid-induced beta structures as monitored by red edge excitation shift, laurdan fluorescence, and FTIR. Biochemistry 40:6016–6026

    Article  CAS  PubMed  Google Scholar 

  • Khuchua ZA, Qin W, Boero J, Cheng J, Payne RM, Saks VA, Strauss AW (1998) Octamer formation and coupling of cardiac sarcomeric mitochondrial creatine kinase are mediated by charged N-terminal residues. J Biol Chem 273:22990–22996

    Article  CAS  PubMed  Google Scholar 

  • Lecompte MF (2005) Interaction of an amphitropic protein (factor Xa) with membrane models in a complex system. Biochim Biophys Acta 1724:307–314

    CAS  PubMed  Google Scholar 

  • Lecompte MF, Bouix G, Mann KG (1994) Electrostatic and hydrophobic interactions are involved in factor Va binding to membranes containing acidic phospholipids. J Biol Chem 269:1905–1910

    CAS  PubMed  Google Scholar 

  • Lecompte MF, Bras AC, Dousset N, Portas I, Salvayre R, Ayrault-Jarrier M (1998) Binding steps of apolipoprotein A-I with phospholipid monolayers: adsorption and penetration. Biochemistry 37:16165–16171

    Article  CAS  PubMed  Google Scholar 

  • Lecompte MF, Laurent G, Jaffrezou JP (2002) Sphingomyelin content conditions insertion of daunorubicin within phosphatidylcholine monolayers. FEBS Lett 525:141–144

    Article  CAS  PubMed  Google Scholar 

  • Lecompte MF, Clavilier J, Rolland C, Collet X, Negre-Salvayre A, Salvayre R (2005) Effect of 4-hydroxynonenal on phosphatidylethanolamine containing condensed monolayer and on its interaction with apolipoprotein A-I. FEBS Lett 579:5074–5078

    Article  CAS  PubMed  Google Scholar 

  • Lenz H, Schmidt M, Welge V, Kueper T, Schlattner U, Wallimann T, Elsasser HP, Wittern KP, Wenck H, Staeb F, Blatt T (2007) Inhibition of cytosolic and mitochondrial creatine kinase by siRNA in HaCaT- and HeLaS3-cells affects cell viability and mitochondrial morphology. Mol Cell Biochem 306:153–162

    Article  CAS  PubMed  Google Scholar 

  • Maniti O, Cheniour M, Marcillat O, Vial C, Granjon T (2009a) Morphology modifications in negatively charged lipid monolayers upon mitochondrial creatine kinase binding. Mol Membr Biol 26:171–185

    Article  CAS  PubMed  Google Scholar 

  • Maniti O, Lecompte MF, Marcillat O, Desbat B, Buchet R, Vial C, Granjon T (2009b) Mitochondrial creatine kinase binding to phospholipid monolayers induces cardiolipin segregation. Biophys J 96:2428–2438

    Article  CAS  PubMed  Google Scholar 

  • Marcillat O, Goldschmidt D, Eichenberger D, Vial C (1987) Only one of the two interconvertible forms of mitochondrial creatine kinase binds to heart mitoplasts. Biochim Biophys Acta 890:233–241

    Article  CAS  PubMed  Google Scholar 

  • Marcillat O, Perraut C, Granjon T, Vial C, Vacheron MJ (1999) Cloning, Escherichia coli expression, and phase-transition chromatography-based purification of recombinant rabbit heart mitochondrial creatine kinase. Prot Expr Purif 17:163–168

    Article  CAS  Google Scholar 

  • Miller K, Sharer K, Suhan J, Koretsky AP (1997) Expression of functional mitochondrial creatine kinase in liver of transgenic mice. Am J Physiol 272:C1193–C1202

    CAS  PubMed  Google Scholar 

  • Muller M, Moser R, Cheneval D, Carafoli E (1985) Cardiolipin is the membrane receptor for mitochondrial creatine phosphokinase. J Biol Chem 260:3839–3843

    CAS  PubMed  Google Scholar 

  • Nelson A, Leermakers FAM (1990) Substrate-induced structural changes in electrode-adsorbed lipid layers. Experimental evidence from the behaviour of phospholipid layers on the mercury-water interface. J Electroanal Chem 278:73–83

    Article  CAS  Google Scholar 

  • Parsons R (1954) Equilibrium properties of electrified interphases. In Bockris JO’M, Conway BE (eds) Modern aspects of electrochemistry, vol 1, London Butterworths, Chapter 3

  • Schlame M, Augustin W (1985) Association of creatine kinase with rat heart mitochondria: high and low affinity binding sites and the involvement of phospholipids. Biomed Biochim Acta 44:1083–1088

    CAS  PubMed  Google Scholar 

  • Schlattner U, Wallimann T (2000a) Octamers of mitochondrial creatine kinase isoenzymes differ in stability and membrane binding. J Biol Chem 17314–17320

  • Schlattner U, Wallimann T (2000b) A quantitative approach to membrane binding of human ubiquitous mitochondrial creatine kinase using surface plasmon resonance. J Bioenerg Biomembr 32:123–131

    Article  CAS  PubMed  Google Scholar 

  • Schlattner U, Gehring F, Vernoux N, Tokarska-Schlattner M, Neumann D, Marcillat O, Vial C, Wallimann T (2004) C-terminal lysines determine phospholipid interaction of sarcomeric mitochondrial creatine kinase. J Biol Chem 279:24334–24342

    Article  CAS  PubMed  Google Scholar 

  • Schlattner U, Tokarska-Schlattner M, Wallimann T (2006) Mitochondrial creatine kinase in human health and disease. Biochim Biophys Acta 1762:164–180

    CAS  PubMed  Google Scholar 

  • Stachowiak O, Dolder M, Wallimann T (1996) Membrane-binding and lipid vesicle cross-linking kinetics of the mitochondrial creatine kinase octamer. Biochemistry 35:15522–15528

    Article  CAS  PubMed  Google Scholar 

  • Vernoux N, Granjon T, Marcillat O, Besson F, Vial C (2006) Interfacial behavior of cytoplasmic and mitochondrial creatine kinase oligomeric states. Biopolymers 81:270–281

    Article  CAS  PubMed  Google Scholar 

  • Vernoux N, Maniti O, Besson F, Granjon T, Marcillat O, Vial C (2007) Mitochondrial creatine kinase adsorption to biomimetic membranes: a Langmuir monolayer study. J Colloid Interface Sci 310:436–445

    Article  CAS  PubMed  Google Scholar 

  • Wallimann T, Wyss M, Brdiczka D, Nicolay K, Eppenberger HM (1992) Intracellular compartmentation, structure and function of creatine kinase isoenzymes in tissues with high and fluctuating energy demands—the phosphocreatine circuit for cellular energy homeostasis. Biochem J 281:21–40

    CAS  PubMed  Google Scholar 

  • Wallimann T, Dolder M, Schlattner U, Eder M, Hornemann T, Kraft T, Stolz M (1998a) Creatine kinase: an enzyme with a central role in cellular energy metabolism. Magma 6:116–119

    Article  CAS  PubMed  Google Scholar 

  • Wallimann T, Dolder M, Schlattner U, Eder M, Hornemann T, O’Gorman E, Ruck A, Brdiczka D (1998b) Some new aspects of creatine kinase (CK): compartmentation, structure, function and regulation for cellular and mitochondrial bioenergetics and physiology. Biofactors 8:229–234

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We are very grateful to Dr J. Clavilier for very fruitful suggestions and discussions. We acknowledge funding from University Lyon 1, CNRS, Région Rhône-Alpes and Agence Nationale de la Recherche.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thierry Granjon.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Maniti, O., Lecompte, MF., Marcillat, O. et al. Mitochondrial creatine kinase interaction with cardiolipin-containing biomimetic membranes is a two-step process involving adsorption and insertion. Eur Biophys J 39, 1649–1655 (2010). https://doi.org/10.1007/s00249-010-0600-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00249-010-0600-4

Keywords

Navigation