Skip to main content
Log in

Inhibition of cytosolic and mitochondrial creatine kinase by siRNA in HaCaT- and HeLaS3-cells affects cell viability and mitochondrial morphology

  • Published:
Molecular and Cellular Biochemistry Aims and scope Submit manuscript

Abstract

The creatine kinase (CK) system is essential for cellular energetics in tissues or cells with high and fluctuating energy requirements. Creatine itself is known to protect cells from stress-induced injury. By using an siRNA approach to silence the CK isoenzymes in human keratinocyte HaCaT cells, expressing low levels of cytoplasmic CK and high levels of mitochondrial CK, as well as HeLa cancer cells, expressing high levels of cytoplasmic CK and low levels of mitochondrial CK, we successfully lowered the respective CK expression levels and studied the effects of either abolishing cytosolic brain-type BB-CK or ubiquitous mitochondrial uMi-CK in these cells. In both cell lines, targeting the dominant CK isoform by the respective siRNAs had the strongest effect on overall CK activity. However, irrespective of the expression level in both cell lines, inhibition of the mitochondrial CK isoform generally caused the strongest decline in cell viability and cell proliferation. These findings are congruent with electron microscopic data showing substantial alteration of mitochondrial morphology as well as mitochondrial membrane topology after targeting uMi-CK in both cell lines. Only for the rate of apoptosis, it was the least expressed CK present in each of the cell lines whose inhibition led to the highest proportion of apoptotic cells, i.e., downregulation of uMi-CK in case of HeLaS3 and BB-CK in case of HaCaT cells. We conclude from these data that a major phenotype is linked to reduction of mitochondrial CK alone or in combination with cytosolic CK, and that this effect is independent of the relative expression levels of Mi-CK in the cell type considered. The mitochondrial CK isoform appears to play the most crucial role in maintaining cell viability by stabilizing contact sites between inner and outer mitochondrial membranes and maintaining local metabolite channeling, thus avoiding transition pore opening which eventually results in activation of caspase cell-death pathways.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Wallimann T, Wyss M, Brdiczka D et al (1992) Intracellular compartmentation, structure and function of creatine kinase isoenzymes in tissues with high and fluctuating energy demands: the ‘phosphocreatine circuit’ for cellular energy homeostasis. Biochem J 281(Pt 1):21–40

    PubMed  CAS  Google Scholar 

  2. Wallimann T, Tokarska-Schlattner M, Neumann D et al (2007) The phospho-creatine circuit: molecular and cellular physiology of creatine kinases sensitivity to free radicals and enhancement by creatine supplementation. In: Saks V (ed) Molecular systems bioenergetics: basic principles, organization and dynamics of cellular energetics. Wiley Publisher Co., USA

  3. Dolder M, Walzel B, Speer O et al (2003) Inhibition of the mitochondrial permeability transition by creatine kinase substrates. Requirement for microcompartmentation. J Biol Chem 278:17760–17766

    Article  PubMed  CAS  Google Scholar 

  4. Schlattner U, Tokarska-Schlattner M, Wallimann T (2006) Mitochondrial creatine kinase in human health and disease. Biochim Biophys Acta 1762:164–180

    PubMed  CAS  Google Scholar 

  5. Wallimann T, Hemmer W (1994) Creatine kinase in non-muscle tissues and cells. Mol Cell Biochem 133–134:193–220

    Article  PubMed  Google Scholar 

  6. Kaldis P, Kamp T, Piendl T et al (1997) Functions of creatine kinase isoenzymes in spermatozoa. Adv Dev Biochem 5:275–312

    CAS  Google Scholar 

  7. Shin JB, Streijger F, Beynon A et al (2007) Hair bundles are specialized for ATP delivery via creatine kinase. Neuron 53:371–386

    Article  PubMed  CAS  Google Scholar 

  8. Schlattner U, Mockli N, Speer O et al (2002) Creatine kinase and creatine transporter in normal, wounded, and diseased skin. J Invest Dermatol 118:416–423

    Article  PubMed  CAS  Google Scholar 

  9. Lenz H, Schmidt M, Welge V et al (2005) The Creatine kinase system in human skin: protective effects of creatine against oxidative and UV damage in vitro and in vivo. J Invest Dermatol 124(2):443–452

    Google Scholar 

  10. Schulze A (2003) Creatine deficiency syndromes. Mol Cell Biochem 244:143–150

    Article  PubMed  CAS  Google Scholar 

  11. Brewer GJ, Wallimann TW (2000) Protective effect of the energy precursor creatine against toxicity of glutamate and beta-amyloid in rat hippocampal neurons. J Neurochem 74:1968–1978

    Article  PubMed  CAS  Google Scholar 

  12. Sullivan PG, Geiger JD, Mattson MP et al (2000) Dietary supplement creatine protects against traumatic brain injury. Ann Neurol 48:723–729

    Article  PubMed  CAS  Google Scholar 

  13. Klivenyi P, Ferrante RJ, Matthews RT et al (1999) Neuroprotective effects of creatine in a transgenic animal model of amyotrophic lateral sclerosis. Nat Med 5:347–350

    Article  PubMed  CAS  Google Scholar 

  14. Matthews RT, Ferrante RJ, Klivenyi P et al (1999) Creatine and cyclocreatine attenuate MPTP neurotoxicity. Exp Neurol 157:142–149

    Article  PubMed  CAS  Google Scholar 

  15. Ferrante RJ, Andreassen OA, Jenkins BG et al (2000) Neuroprotective effects of creatine in a transgenic mouse model of Huntington’s disease. J Neurosci 20:4389–4397

    PubMed  CAS  Google Scholar 

  16. Zhu S, Li M, Figueroa BE et al (2004) Prophylactic creatine administration mediates neuroprotection in cerebral ischemia in mice. J Neuroscience 24:5909–5912

    Article  CAS  Google Scholar 

  17. Hatano E, Tanaka A, Kanazawa A et al (2004) Inhibition of tumor necrosis factor-induced apoptosis in transgenic mouse liver expressing creatine kinase. Liver Int 24:384–393

    Article  PubMed  CAS  Google Scholar 

  18. Vandenberghe K, Goris M, Van Hecke P et al (1997) Long-term creatine intake is beneficial to muscle performance during resistance training. J Appl Physiol 83:2055–2063

    PubMed  CAS  Google Scholar 

  19. Beutner G, Ruck A, Riede B et al (1998) Complexes between porin, hexokinase, mitochondrial creatine kinase and adenylate translocator display properties of the permeability transition pore. Implication for regulation of permeability transition by the kinases. Biochim Biophys Acta 1368:7–18

    Article  PubMed  CAS  Google Scholar 

  20. Meyer LE, Machado LB, Santiago AP et al (2006) Mitochondrial creatine kinase activity prevents reactive oxygen species generation: antioxidant role of mitochondrial kinase-dependent ADP re-cycling activity. J Biol Chem 281:37361–37371

    Article  PubMed  CAS  Google Scholar 

  21. Kay L, Nicolay K, Wieringa B et al (2000) Direct evidence for the control of mitochondrial respiration by mitochondrial creatine kinase in oxidative muscle cells in situ. J Biol Chem 275:6937–6944

    Article  PubMed  CAS  Google Scholar 

  22. van Deursen J, Wieringa B (1994) Approaching the multifaceted nature of energy metabolism: inactivation of the cytosolic creatine kinases via homologous recombination in mouse embryonic stem cells. Mol Cell Biochem 133–134:263–274

    Article  PubMed  Google Scholar 

  23. Steeghs K, Oerlemans F, de Haan A et al (1998) Cytoarchitectural and metabolic adaptations in muscles with mitochondrial and cytosolic creatine kinase deficiencies. Mol Cell Biochem 184:183–194

    Article  PubMed  CAS  Google Scholar 

  24. de Groof AJ, Smeets B, Groot Koerkamp MJ et al (2001) Changes in mRNA expression profile underlie phenotypic adaptations in creatine kinase-deficient muscles. FEBS Lett 506:73–78

    Article  PubMed  Google Scholar 

  25. de Groof AJ, Oerlemans FT, Jost CR et al (2001) Changes in glycolytic network and mitochondrial design in creatine kinase-deficient muscles. Muscle Nerve 24:1188–1196

    Article  PubMed  Google Scholar 

  26. Jost CR, Van Der Zee CE, In ‘t Zandt HJ et al (2002) Creatine kinase B-driven energy transfer in the brain is important for habituation and spatial learning behaviour, mossy fibre field size and determination of seizure susceptibility. Eur J Neurosci 15:1692–1706

    Article  PubMed  Google Scholar 

  27. In ‘t Zandt HJ, Renema WK, Streijger F et al (2004) Cerebral creatine kinase deficiency influences metabolite levels and morphology in the mouse brain: a quantitative in vivo 1H and 31P magnetic resonance study. J Neurochem 90:1321–1330

    Article  PubMed  CAS  Google Scholar 

  28. Momken I, Lechene P, Koulmann N et al (2005) Impaired voluntary running capacity of creatine kinase-deficient mice. J Physiol 565:951–964

    Article  PubMed  CAS  Google Scholar 

  29. Streijger F, Oerlemans F, Ellenbroek BA et al (2005) Structural and behavioural consequences of double deficiency for creatine kinases BCK and UbCKmit. Behav Brain Res 157:219–234

    Article  PubMed  CAS  Google Scholar 

  30. Novotova M, Pavlovicova M, Veksler VI et al (2006) Ultrastructural remodeling of fast skeletal muscle fibers induced by invalidation of creatine kinase. Am J Physiol Cell Physiol 291:C1279–C1285

    Article  PubMed  CAS  Google Scholar 

  31. Spindler M, Meyer K, Stromer H et al (2004) Creatine kinase-deficient hearts exhibit increased susceptibility to ischemia-reperfusion injury and impaired calcium homeostasis. Am J Physiol Heart Circ Physiol 287:H1039–H1045

    Article  PubMed  CAS  Google Scholar 

  32. Speer O, Back N, Buerklen T et al (2005) Octameric mitochondrial creatine kinase induces and stabilizes contact sites between the inner and outer membrane. Biochem J 385:445–450

    Article  PubMed  CAS  Google Scholar 

  33. Ito S, Karnovsky JM (1968) Formaldehyde-glutaraldehyde-trinitrofixation (Yellow fix). J Cell Biol 39:168a–169a

    Google Scholar 

  34. Dzeja PP, Terzic A (2003) Phosphotransfer networks and cellular energetics. J Exp Biol 206:2039–2047

    Article  PubMed  CAS  Google Scholar 

  35. Miller EE, Evans AE, Cohn M (1993) Inhibition of rate of tumor growth by creatine and cyclocreatine. Proc Natl Acad Sci USA 90:3304–3308

    Article  PubMed  CAS  Google Scholar 

  36. O’Gorman E, Beutner G, Dolder M et al (1997) The role of creatine kinase in inhibition of mitochondrial permeability transition. FEBS Lett 414:253–257

    Article  PubMed  CAS  Google Scholar 

  37. Kroemer G, Galluzzi L, Brenner C (2007) Mitochondrial membrane permeabilization in cell death. Physiol Rev 87:99–163

    Article  PubMed  CAS  Google Scholar 

  38. Wallimann T, Dolder M, Schlattner U et al (1998) Some new aspects of creatine kinase (CK): compartmentation, structure, function and regulation for cellular and mitochondrial bioenergetics and physiology. Biofactors 8:229–234

    PubMed  CAS  Google Scholar 

  39. Kreider RB (2003) Effects of creatine supplementation on performance and training adaptations. Mol Cell Biochem 244:89–94

    Article  PubMed  CAS  Google Scholar 

  40. Brosnan JT, Brosnan ME (2007) Creatine: endogenous metabolite, dietary, and therapeutic supplement. Annu Rev Nutr [Epup ahead of print]

  41. Balsom PD, Soderlund K, Ekbolm B (1994) Creatine in humans with special reference to creatine supplementation. Sports Med 18:268–280

    Google Scholar 

  42. Wyss M, Wallimann T (1994) Creatine metabolism and the consequences of creatine depletion in muscle. Mol Cell Biochem 133–134:51–66

    Article  PubMed  Google Scholar 

  43. Guerrero-Ontiveros ML, Wallimann T (1998) Creatine supplementation in health and disease. Effects of chronic creatine ingestion in vivo: down-regulation of the expression of creatine transporter isoforms in skeletal muscle. Mol Cell Biochem 184:427–437

    Article  PubMed  CAS  Google Scholar 

  44. Beal MF (2003) Bioenergetic approaches for neuroprotection in Parkinson’s disease. Ann Neurol 53 Suppl 3:S39–S47; discussion S47–8

    Article  Google Scholar 

  45. Andres RH, Ducray AD, Huber AW et al (2005) Effects of creatine treatment on survival and differentiation of GABA-ergic neurons in cultured striatal tissue. J Neurochem 95(1):33–45

    Google Scholar 

  46. Andres RH, Huber AW, Schlattner U et al (2005) Effects of creatine treatment on the survival of dopaminergic neurons in cultured fetal ventral mesencephalic tissue. Neuroscience 133:701–713

    Article  PubMed  CAS  Google Scholar 

  47. Hausmann ON, Fouad K, Wallimann T, et al (2002) Protective effects of oral creatine supplementation on spinal cord injury in rats. Spinal Cord 40:449–456

    Article  PubMed  CAS  Google Scholar 

  48. Berneburg M, Gremmel T, Kurten V et al (2005) Creatine supplementation normalizes mutagenesis of mitochondrial DNA as well as functional consequences. J Invest Dermatol 125:213–220

    PubMed  CAS  Google Scholar 

  49. Zemtsov A (2007) Skin phosphocreatine. Skin Res Technol 13:115–118

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

We thank Dr. Gesa Muhr and Dr. Ute Breitenbach, Beiersdorf AG (Hamburg, Germany) for support of the siRNA transfection experiments. Further we thank Ursula Lehr, Brigitte Agricola, and Volkwin Kramer, Department of Cytobiology and Cytopathology (Philipps University, Marburg) for their assistance with the transmission electron microscopy and photography. This work was supported by a grant from the Swiss National Science Foundation No. 31000AO-102075 (to T.W. and U.S.) and a “Chaire d’excellence” (ANR France, to U.S.).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Holger Lenz.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lenz, H., Schmidt, M., Welge, V. et al. Inhibition of cytosolic and mitochondrial creatine kinase by siRNA in HaCaT- and HeLaS3-cells affects cell viability and mitochondrial morphology. Mol Cell Biochem 306, 153–162 (2007). https://doi.org/10.1007/s11010-007-9565-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11010-007-9565-8

Keywords

Navigation