Skip to main content

Advertisement

Log in

Comparison of aggregation enhancement and inhibition as strategies for reducing the cytotoxicity of the aortic amyloid polypeptide medin

  • Original Paper
  • Published:
European Biophysics Journal Aims and scope Submit manuscript

Abstract

Aortic medial amyloid (AMA) occurs as localised non-atheromatous plaques in virtually all individuals over the age of 50. The major protein component of AMA is the 50-residue polypeptide medin. Here we propose two methods of manipulating medin aggregation to reduce the cytotoxic species of medin: either by promoting formation of larger benign species or retaining small non-cytotoxic species. Medin co-localises with a variety of factors including glycosaminoglycans (GAGs). The first approach shows that the GAG heparin enhances the rate of medin aggregation and alters the morphology of the amyloid fibrils. Cellular viability measurements suggest that heparin eliminates small cytotoxic species of medin, promoting formation of benign fibrils. The second approach applies a previously successful approach of designing small peptide moieties that are complementary to the key amyloidogenic sequence but which contain modified amino acids known to disrupt hydrogen bonding and therefore prevent aggregation of the target protein. This approach also reduces cellular toxicity of medin at all stages of the aggregation process examined exhibiting a different mode of action to heparin. These results raise the question of whether enhancement of medin aggregation by GAGs is beneficial, by eliminating toxic oligomers, or has deleterious effects by reducing arterial plasticity associated with increased fibril load and whether small peptide inhibitors can be applied as drug candidates for amyloid diseases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Abbreviations

AMed42–49 :

Peptide corresponding to residues 42–49 of medin

AMA:

Aortic medial amyloid

BA:

β-Alanine

DLS:

Dynamic light scattering

GABA:

γ-Aminobutyric acid

GAG:

Glycosaminoglycan

HSPG:

Heparin sulphate proteoglycan

MTT:

(4,5-Dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide

TEM:

Transmission electron microscopy

ThT:

Thioflavin T

SRE:

Self-recognition element

References

  • Alexandrescu AT (2005) Amyloid accomplices and enforcers. Protein Sci 14:1–12

    Article  CAS  PubMed  Google Scholar 

  • Arrasate M, Mitra S, Schweitzer ES, Segal MR, Finkbeiner S (2004) Inclusion body formation reduces levels of mutant huntingtin and the risk of neuronal death. Nature 431:805–810

    Article  CAS  PubMed  Google Scholar 

  • Bodner RA, Housman DE, Kazantsev AG (2006a) New directions for neurodegenerative disease therapy—using chemical compounds to boost the formation of mutant protein inclusions. Cell Cycle 5:1477–1480

    CAS  PubMed  Google Scholar 

  • Bodner RA, Outeiro TF, Altmann S, Maxwell MM, Cho SH, Hyman BT, McLean PJ, Young AB, Housman DE, Kazantsev AG (2006b) Pharmacological promotion of inclusion formation: a therapeutic approach for Huntington’s and Parkinson’s diseases. Proc Natl Acad Sci USA 103:4246–4251

    Article  CAS  PubMed  Google Scholar 

  • Bucciantini M, Giannoni E, Chiti F, Baroni F, Formigli L, Zurdo J, Taddei N, Ramponi G, Dobson CM, Stefani M (2002) Inherent toxicity of aggregates implies a common mechanism for protein misfolding diseases. Nature 416:507–511

    Article  CAS  PubMed  Google Scholar 

  • Calamai M, Kumita JR, Mifsud J, Parrini C, Ramazzotti M, Ramponi G, Taddei N, Chiti F, Dobson CM (2006) Nature and significance of the interactions between amyloid fibrils and biological polyelectrolytes. Biochemistry 45:12806–12815

    Article  CAS  PubMed  Google Scholar 

  • Cardin AD, Weintraub HJR (1989) Molecular modelling of protein-glycosaminoglycan interactions. Arteriosclerosis 9:21–32

    CAS  PubMed  Google Scholar 

  • Castillo GM, Cummings JA, Yang WH, Judge ME, Sheardown MJ, Rimvall K, Hansen JB, Snow AD (1998) Sulphate content and specific glycosaminoglycan backbone of perlecan are critical for perlecan’s enhancement of islet amyloid polypeptide (amylin) fibril formation. Diabetes 47:612–620

    Article  CAS  PubMed  Google Scholar 

  • Chiti F, Dobson CM (2006) Protein misfolding, functional amyloid, and human disease. Annu Rev Biochem 75:333–366

    Article  CAS  PubMed  Google Scholar 

  • Cohlberg JA, Li J, Uversky VN, Fink AL (2002) Heparin and other glycosaminoglycans stimulate the formation of amyloid fibrils from α-synuclein in vitro. Biochemistry 41:1502–1511

    Article  CAS  PubMed  Google Scholar 

  • Ehrnhoefer DE, Bieschke J, Boeddrich A, Herbst M, Masino L, Lurz R, Engemann S, Pastore A, Wanker EE (2008) EGCG redirects amyloidogenic polypeptides into unstructured, off-pathway oligomers. Nat Struct Mol Biol 15:558–566

    Article  CAS  PubMed  Google Scholar 

  • Haggqvist B, Naslund J, Sletten K, Westermark GT, Mucchiano G, Tjernberg LO, Nordstedt C, Engstrom U, Westermark P (1999) Medin: an integral fragment of aortic smooth muscle cell-produced lactadherin forms the most common human amyloid. Proc Natl Acad Sci USA 96:8669–8674

    Article  CAS  PubMed  Google Scholar 

  • Kayed R, Head E, Thompson JL, McIntire TM, Milton SC, Cotman CW, Glabe CG (2003) Common structure of soluble amyloid oligomers implies common mechanism of pathogenesis. Science 300:486–489

    Article  CAS  PubMed  Google Scholar 

  • Konno T, Oiki S, Morii T (2007) Synergistic action of polyanionic and non-polar cofactors in fibrillation of human islet amyloid polypeptide. FEBS Letters 581:1635–1638

    Article  CAS  PubMed  Google Scholar 

  • Kvam E, Nannenga BL, Wang MS, Jia Z, Sierks MR, Messer A (2009) Conformational targeting of fibrillar polyglutamine proteins in live cells escalates aggregation and cytotoxicity. PLoS ONE 4:e5727

    Article  PubMed  CAS  Google Scholar 

  • Larsson A, Soderberg L, Westermark GT, Sletten K, Engstrom U, Tjernberg LO, Naslund J, Westermark P (2007) Unwinding fibril formation of medin, the peptide of the most common form of human amyloid. Biochem Biophys Res Commun 361:822–828

    Article  CAS  PubMed  Google Scholar 

  • Lashuel HA, Hartley D, Petre BM, Walz T, Lansbury PTJ (2002) Amyloid pores from pathogenic mutations. Nature 418:291

    Article  CAS  PubMed  Google Scholar 

  • Levine H (1993) Thioflavin T interaction with synthetic Alzheimer’s disease β-amyloid peptides: detection of amyloid aggregation in solution. Protein Sci 2:404–410

    Article  CAS  PubMed  Google Scholar 

  • Madine J, Copland A, Serpell LC, Middleton DA (2009a) Cross-β spine architecture of fibrils formed by the amyloidogenic segment NFGSVQFV of medin from solid-state NMR and X-ray fiber diffraction measurements. Biochemistry 48:3089–3099

    Article  CAS  PubMed  Google Scholar 

  • Madine J, Wang X, Brown DR, Middleton DA (2009b) Evaluation of beta-alanine- and GABA-substituted peptides as inhibitors of disease-linked protein aggregation. ChemBioChem 10:1982–1987

    Article  CAS  PubMed  Google Scholar 

  • Masuda M, Suzuki N, Taniguchi S, Oikawa T, Nonaka T, Iwatsubo T, Hisanaga S-i, Goedert M, Hasegawa M (2006) Small molecule inhibitors of α-synuclein filament assembly. Biochemistry 45:6085–6094

    Article  CAS  PubMed  Google Scholar 

  • Merlini G, Westermark P (2004) The systemic amyloidoses: clearer understanding of the molecular mechanisms offers hope for more effective therapies. J Intern Med 255:159–178

    Article  CAS  PubMed  Google Scholar 

  • Olofsson A, Borowik T, Grobner G, Sauer-Eriksson AE (2007) Negatively charged phospholipid membranes induce amyloid formation of media via an alpha-helical intermediate. J Mol Biol 374:186–194

    Article  CAS  PubMed  Google Scholar 

  • Peng SW, Westermark GT, Sletten K, Glennert J, Westermark P (2001) Distribution of medin-amyloid in aging and in association with arterial diseases. Amyloid 8:122–123

    Google Scholar 

  • Peng S, Larsson A, Wassberg E, Gerwins P, Thelin S, Fu X, Westermark P (2007) Role of aggregated medin in the pathogenesis of thoracic aortic aneurysm and dissection. Lab Invest 87:1195–1205

    Article  CAS  PubMed  Google Scholar 

  • Snow AD, Sekiguchi R, Nochlin D, Fraser P, Kimata K, Mizutani A, Arai M, Schreier WA, Morgan DG (1994) An important role of heparan sulfate proteoglycan (perlecan) in a model system for the deposition and persistence of fibrillar aβ-amyloid in rat brain. Neuron 12:219–234

    Article  CAS  PubMed  Google Scholar 

  • van Horssen J, Wesseling P, van den Heuvel LPWJ, de Waal RMW, Verbeek MM (2003) Heparan sulphate proteoglycans in Alzheimer’s disease and amyloid-related disorders. Lancet Neurol 2:482–492

    Article  PubMed  Google Scholar 

  • Watson DJ, Lander AD, Selkoe DJ (1997) Heparin-binding properties of the amyloidogenic peptides A beta and amylin—dependence on aggregation state and inhibition by Congo red. J Biol Chem 272:31617–31624

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The Alzheimer’s Research Trust is acknowledged for a Fellowship to JM. DAM is supported by funding from the BBSRC and the British Heart Foundation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jillian Madine.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Madine, J., Middleton, D.A. Comparison of aggregation enhancement and inhibition as strategies for reducing the cytotoxicity of the aortic amyloid polypeptide medin. Eur Biophys J 39, 1281–1288 (2010). https://doi.org/10.1007/s00249-010-0581-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00249-010-0581-3

Keywords

Navigation