Skip to main content
Log in

Effects of seeding on lysozyme amyloid fibrillation in the presence of epigallocatechin and polyethylene glycol

  • Published:
Biochemistry (Moscow) Aims and scope Submit manuscript

Abstract

Preformed amyloid fibrils can act as seeds for accelerating protein fibrillation. In the present study, we examined the effects of preformed seeds on lysozyme amyloid fibrillation in the presence of two distinct inhibitors–epigallocatechin (EGC) and polyethylene glycol 2000 (PEG). The results demonstrated that the effects of fibrillar seeds on the acceleration of lysozyme fibrillation depended on the aggregation pathway directed by an inhibitor. EGC inhibited lysozyme fibrillation and modified the peptide chains with quinone moieties in a concentration-dependent manner. The resulting aggregates showed amorphous off-pathway morphology. Preformed fibril seeds did not promote lysozyme fibrillation in the presence of EGC. PEG also inhibited lysozyme fibrillation, and the resulting aggregates showed on-pathway protofibrillar morphology. In contrast, the addition of fibril seeds into the mixture of lysozyme and PEG significantly stimulated fibril growth. Assays of cell viability showed that both EGC and PEG inhibited the formation of cytotoxic species. In accordance with thioflavine T data, the seeds failed to alter the cell-damaging potency of the EGC-directed off-pathway aggregates, but increased the cytotoxicity of the PEG-directed on-pathway fibrils. We suggest that the pattern of interaction between lysozyme and an inhibitor determines the pathway of aggregation and therefore the effects of seeding on amyloid formation. EGC covalently modified lysozyme chains with quinones, directing the aggregation to proceed through an off-pathway, whereas PEG affected the protein in a noncovalent manner, and fibril growth could be stimulated under seeding through an on-pathway.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

EGC:

epigallocatechin

EGCG:

epigallocatechin-3-gallate

MTT:

thiazolyl blue tetrazolium bromide

NBT:

nitroblue tetrazolium

PEG:

polyethylene glycol

TEM:

trans-mission electron microscopy

ThT:

thioflavine T

References

  1. Stefani, M. (2004) Protein misfolding and aggregation: new examples in medicine and biology of the dark side of the protein world, Biochim. Biophys. Acta, 1739, 5–25.

    Article  CAS  PubMed  Google Scholar 

  2. Dobson, C. M. (2003) Protein folding and misfolding, Nature, 426, 884–890.

    Article  CAS  PubMed  Google Scholar 

  3. Nizhnikov, A. A., Antonets, K. S., and Inge-Vechtomov, S. G. (2015) Amyloids: from pathogenesis to function, Biochemistry (Moscow), 80, 1127–1144.

    Article  CAS  Google Scholar 

  4. Bucciantini, M., Giannoni, E., Chiti, F., Baroni, F., Formigli, L., Zurdo, J., Taddei, N., Ramponi, G., Dobson, C. M., and Stefani, M. (2002) Inherent toxicity of aggregates implies a common mechanism for protein misfolding diseases, Nature, 416, 507–511.

    Article  CAS  PubMed  Google Scholar 

  5. Huang, B., He, J., Ren, J., Yan, X. Y., and Zeng, C. M. (2009) Cellular membrane disruption by amyloid fibrils involved intermolecular disulfide cross-linking, Biochemistry, 48, 5794–5800.

    Article  CAS  PubMed  Google Scholar 

  6. Hu, X., Crick, S. L., Bu, G., Frieden, C., Pappu, R. V., and Lee, J. M. (2009) Amyloid seeds formed by cellular uptake, concentration, and aggregation of the amyloid-beta peptide, Proc. Natl. Acad. Sci. USA, 106, 20324–20329. BIOCHEMISTRY (Moscow) Vol. 82 No. 2 2017

    Article  CAS  PubMed  Google Scholar 

  7. Furukawa, Y., Kaneko, K., Watanabe, S., Yamanaka, K., and Nukina, N. (2013) Intracellular seeded aggregation of mutant Cu,Zn-superoxide dismutase associated with amyotrophic lateral sclerosis, FEBS Lett., 587, 2500–2505.

    Article  CAS  PubMed  Google Scholar 

  8. Hall, D., Kardos, J., Edskes, H., Carver, J. A., and Goto, Y. (2015) A multi-pathway perspective on protein aggregation: implications for control of the rate and extent of amyloid formation, FEBS Lett., 589, 672–679.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Crespo, R., Villar-Alvarez, E., Taboada, P., Rocha, F. A., Damas, A. M., and Martins, P. M. (2016) What can the kinetics of amyloid fibril formation tell about off-pathway aggregation? J. Biol. Chem., 291, 2018–2032.

  10. Ehrnhoefer, D. E., Bieschke, J., Boeddrich, A., Herbst, M., Masino, L., Lurz, R., Engemann, S., Pastore, A., and Wanker, E. E. (2008) EGCG redirects amyloidogenic polypeptides into unstructured, off-pathway oligomers, Nature Struct. Mol. Biol., 15, 558–566.

    Article  CAS  Google Scholar 

  11. Bieschke, J., Russ, J., Friedrich, R. P., Ehrnhoefer, D. E., Wobst, H., Neugebauer, K., and Wanker, E. E. (2010) EGCG remodels mature alpha-synuclein and amyloidbeta fibrils and reduces cellular toxicity, Proc. Natl. Acad. Sci. USA, 107, 7710–7715.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Williams, A. D., Sega, M., Chen, M., Kheterpal, I., Geva, M., Berthelier, V., Kaleta, D. T., Cook, K. D., and Wetzel, R. (2005) Structural properties of Aß protofibrils stabilized by a small molecule, Proc. Natl. Acad. Sci. USA, 102, 71157120.

    Google Scholar 

  13. Necula, M., Breydo, L., Milton, S., Kayed, R., Van der Veer, W. E., Tone, P., and Glabe, C. G. (2007) Methylene blue inhibits amyloid Abeta oligomerization by promoting fibrillization, Biochemistry, 46, 8850–8860.

    Article  CAS  PubMed  Google Scholar 

  14. Pepys, M. B., Hawkins, P. N., Booth, D. R., Vigushin, D. M., Tennent, G. A., Soutar, A. K., Totty, N., Nguyen, O., Blake, C. F., Terry, C. J., Feest, T. G., Zalin, A. M., and Hsuan, J. J. (1993) Human lysozyme gene mutations cause hereditary systemic amyloidosis, Nature, 362, 553–557.

    Article  CAS  PubMed  Google Scholar 

  15. Swaminathan, R., Ravi, V. K., Kumar, S., Kumar, M. V. S., and Chandra, N. (2011) Lysozyme: a model protein for amyloid research, Adv. Protein Chem. Struct. Biol., 84, 63–111.

    Article  CAS  PubMed  Google Scholar 

  16. Gharibyan, A. L., Zamotin, V., Yanamandra, K., Moskaleva, O. S., Margulis, B. A., Kostanyan, I. A., and Morozova-Roche, L. A. (2007) Lysozyme amyloid oligomers and fibrils induce cellular death via different apoptotic/necrotic pathways, J. Mol. Biol., 365, 1337–1349.

    Article  CAS  PubMed  Google Scholar 

  17. Frare, E., De Laureto, P. P., Zurdo, J., Dobson, C. M., and Fontana, A. (2004) A highly amyloidogenic region of hen lysozyme, J. Mol. Biol., 340, 1153–1165.

    Article  CAS  PubMed  Google Scholar 

  18. Munishkina, L. A., Cooper, E. M., Uversky, V. N., and Fink, A. L. (2004) The effect of macromolecular crowding on protein aggregation and amyloid fibril formation, J. Mol. Recognit., 17, 456–464.

    Article  CAS  PubMed  Google Scholar 

  19. Ghahghaei, A., Divsalar, A., and Faridi, N. (2010) The effects of molecular crowding on the amyloid fibril formation of a-lactalbumin and the chaperone action of acasein, Protein J., 29, 257–264.

    Article  CAS  PubMed  Google Scholar 

  20. Hatters, D. M., Minton, A. P., and Howlett, G. J. (2002) Macromolecular crowding accelerates amyloid formation by human apolipoprotein C-II, J. Biol. Chem., 277, 78247830.

    Article  Google Scholar 

  21. Seeliger, J., Werkmuller, A., and Winter, R. (2013) Macromolecular crowding as a suppressor of human IAPP fibril formation and cytotoxicity, PLoS One, 8, e69652.

    Article  Google Scholar 

  22. Sukenik, S., Politi, R., Ziserman, L., Danino, D., Friedler, A., and Harries, D. (2011) Crowding alone cannot account for cosolute effect on amyloid aggregation, PLoS One, 6, e15608.

    Article  Google Scholar 

  23. Mittal, S., and Singh, L. R. (2014) Macromolecular crowding decelerates aggregation of a ß-rich protein, bovine carbonic anhydrase: a case study, J. Biochem., 156, 273–282.

    CAS  PubMed  Google Scholar 

  24. Porat, Y., Abramowitz, A., and Gazit, E. (2006) Inhibition of amyloid fibril formation by polyphenols: structural similarity and aromatic interactions as a common inhibition mechanism, Chem. Biol. Drug Des., 67, 27–37.

    Article  CAS  PubMed  Google Scholar 

  25. Feng, S., Song, X. H., and Zeng, C. M. (2012) Inhibition of amyloid fibrillation of lysozyme by phenolic compounds involves quinoprotein formation, FEBS Lett., 586, 39513955.

    Article  Google Scholar 

  26. He, J., Xing, Y. F., Huang, B., Zhang, Y. Z., and Zeng, C. M. (2009) Tea catechins induced the conversion of preformed lysozyme amyloid fibrils to amorphous aggregates, J. Agr. Food Chem., 57, 11391–11396.

    Article  CAS  Google Scholar 

  27. Kim, J., Lee, H. J., and Lee, K. W. (2010) Naturally occurring phytochemicals for the prevention of Alzheimer’s disease, J. Neurochem., 112, 1415–1430.

    Article  CAS  PubMed  Google Scholar 

  28. Shoval, H., Lichtenberg, D., and Gazit, E. (2007) The molecular mechanisms of the anti-amyloid effects of phenols, Amyloid, 14, 73–87.

    Article  CAS  PubMed  Google Scholar 

  29. Cao, N., Zhang, Y. J., Feng, S., and Zeng, C. M. (2015) Quinopeptide formation associated with the disruptive effect of epigallocatechin gallate on lysozyme fibrils, Int. J. Biol. Macromol., 78, 389–395.

    Article  CAS  PubMed  Google Scholar 

  30. Paz, M. A., Fluckiger, R., Boak, A., Kagan, H. M., and Gallop, P. M. (1991) Specific detection of quinoproteins by redox-cycling staining, J. Biol. Chem., 266, 689–692.

    CAS  PubMed  Google Scholar 

  31. Mishra, R., Sorgjerd, K., Nystrom, S., Nordigarden, A., Yu, Y. C., and Hammarstrom, P. (2007) Lysozyme amyloidogenesis is accelerated by specific nicking and fragmentation but decelerated by intact protein binding and conversion, J. Mol. Biol., 366, 1029–1044.

    Article  CAS  PubMed  Google Scholar 

  32. Ghosh, S., Pandey, N. K., and Dasgupta, S. (2014) Crowded milieu prevents fibrillation of hen egg white lysozyme with retention of enzymatic activity, J. Photochem. Photobiol. B, 138, 8–16.

    Article  CAS  PubMed  Google Scholar 

  33. Ghosh, S., Pandey, N. K., and Dasgupta, S. (2013) Epicatechin gallate prevents alkali-salt mediated fibrillogenesis of hen egg white lysozyme, Int. J. Biol. Macromol., 54, 90–98.

    Article  CAS  PubMed  Google Scholar 

  34. Mossuto, M. F., Bolognesi, B., Guixer, B., Dhulesia, A., Agostini, F., Kumita, J. R., Tartaglia, G. G., Dumoulin, M., Dobson, C. M., and Salvatella, X. (2011) Disulfide bonds reduce the toxicity of the amyloid fibrils formed by an extracellular protein, Angew. Chem. Int. Ed., 50, 70487051.

    Article  Google Scholar 

  35. Hill, S. E., Miti, T., Richmond, T., and Muschol, M. (2011) Spatial extent of charge repulsion regulates assembly pathways for lysozyme amyloid fibrils, PLoS One, 6, e18171.

    Article  Google Scholar 

  36. Wawer, J., Krakowiak, J., Szocinski, M., Lustig, Z., Olszewski, M., and Szostak, K. (2014) Inhibition of amyloid fibril formation of hen egg white lysozyme by trimethylamine N-oxide at low pH, Int. J. Biol. Macromol., 70, 214221.

    Article  Google Scholar 

  37. Harada, A., Azakami, H., and Kato, A. (2008) Amyloid fibril formation of hen lysozyme depends on the instability of the C-helix (88-99), Biosci. Biotechnol. Biochem., 72, 1523–1530.

    Article  CAS  PubMed  Google Scholar 

  38. Kumar, S. V., Ravi, K., and Swaminathan, R. (2008) How do surfactants and DTT affect the size, dynamics, activity and growth of soluble lysozyme aggregates? Biochem. J., 415, 275–288.

    CAS  PubMed  Google Scholar 

  39. Ravi, V. K., Swain, T., Chandra, N., and Swaminathan, R. (2014) On the characterization of intermediates in the isodesmic aggregation pathway of hen lysozyme at alkaline pH, PLoS One, 9, e87256.

    Article  Google Scholar 

  40. Serio, T. R., Cashikar, A. G., Kowal, A. S., Sawicki, G. J., Moslehi, J. J., Serpell, L., Arnsdorf, M. F., and Lindquist, S. L. (2000) Nucleated conformational conversion and the replication of conformational information by a prion determinant, Science, 289, 1317–1321.

    Article  CAS  PubMed  Google Scholar 

  41. Esler, W. P., Stimson, E. R., Jennings, J. M., Vinters, H. V., Ghilardi, J. R., Lee, J. P., Mantyh, P. W., and Maggio, J. E. (2000) Alzheimer’s disease amyloid propagation by a template-dependent dock-lock mechanism, Biochemistry, 39, 6288–6295.

    Article  CAS  PubMed  Google Scholar 

  42. Nguyen, P. H., Li, M. S., Stock, G., Straub, J. E., and Thirumalai, D. (2007) Monomer adds to preformed structured oligomers of Aß-peptides by a two-stage dock-lock mechanism, Proc. Natl. Acad. Sci. USA, 104, 111–116.

    Article  CAS  PubMed  Google Scholar 

  43. Grigorashvili, E. I., Selivanova, O. M., Dovidchenko, N. V., Dzhus, U. F., Mikhailina, A. O., Suvorina, M. Y., Marchenkov, V. V., Surin, A. K., and Galzitskaya, O. V. (2016) Determination of size of folding nuclei of fibrils formed from recombinant Aß(1-40) peptide, Biochemistry (Moscow), 81, 538–547.

    Article  CAS  Google Scholar 

  44. Selivanova, O. M., Glyakina, A. V., Gorbunova, E. Y., Mustaeva, L. G., Suvorina, M. Y., Grigorashvili, E. I., Nikulin, A. D., Dovidchenko, N. V., Rekstina, V. V., Kalebina, T. S., Surin, A. K., and Galzitskaya, O. V. (2016) Structural model of amyloid fibrils for amyloidogenic peptide from Bgl2p-glucantransferase of S. cerevisiae cell wall and its modifying analog. New morphology of amyloid fibrils, Biochim. Biophys. Acta, 1864, 1489–1499.

    Article  CAS  PubMed  Google Scholar 

  45. Wenner, J. R., and Bloomfield, V. A. (1999) Crowding effects on EcoRV kinetics and binding, Biophys. J., 77, 3234–3241.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Hirata, Y., Sano, Y., Aoki, M., Shohji, H., Katoh, S., Abe, J., Hitsukuri, S., and Yamamoto, H. (2003) Small-angle Xray scattering studies of moderately concentrated dextran solution, Carbohydr. Polym., 53, 331–335.

    Article  CAS  Google Scholar 

  47. Breydo, L., Reddy, K. D., Piai, A., Felli, I. C., Pierattelli, R., and Uversky, V. N. (2014) The crowd you’re in with: effects of different types of crowding agents on protein aggregation, Biochim. Biophys. Acta, 1844, 346–357.

    Article  CAS  PubMed  Google Scholar 

  48. Phillip, Y., and Schreiber, G. (2013) Formation of protein complexes in crowded environments -from in vitro to in vivo, FEBS Lett., 587, 1046–1052.

    Article  CAS  PubMed  Google Scholar 

  49. Gaharwar, B., Gour, S., Kaushik, V., Gupta, N., Kumar, V., Hause, G., and Yadav, J. K. (2015) Assessment of the effect of macromolecular crowding on aggregation behavior of a model amyloidogenic peptide, Protein Pept. Lett., 22, 87–93.

    Article  CAS  PubMed  Google Scholar 

  50. Necula, M., Kayed, R., Milton, S., and Glabe, C. (2007) Small molecule inhibitors of aggregation indicate that amyloid-ß oligomerization and fibrillization pathways are independent and distinct, J. Biol. Chem., 282, 10311–10324.

    Article  CAS  PubMed  Google Scholar 

  51. Moores, B., Drolle, E., Attwood, S. J., Simons, J., and Leonenko, Z. (2011) Effect of surfaces on amyloid fibril formation, PLoS One, 6, e25954.

    Article  Google Scholar 

  52. Pellarin, R., Schuetz, P., Guarnera, E., and Caflisch, A. (2010) Amyloid fibril polymorphism is under kinetic control, J. Am. Chem. Soc., 132, 14960–14970.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Cheng-Ming Zeng.

Additional information

Published in Russian in Biokhimiya, 2017, Vol. 82, No. 2, pp. 266-279.

Originally published in Biochemistry (Moscow) On-Line Papers in Press, as Manuscript BM16-252, November 7, 2016.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kong, LX., Zeng, CM. Effects of seeding on lysozyme amyloid fibrillation in the presence of epigallocatechin and polyethylene glycol. Biochemistry Moscow 82, 156–167 (2017). https://doi.org/10.1134/S0006297917020079

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0006297917020079

Keywords

Navigation