Skip to main content
Log in

Finding molecular dioxygen tunnels in homoprotocatechuate 2,3-dioxygenase: implications for different reactivity of identical subunits

  • Original Paper
  • Published:
European Biophysics Journal Aims and scope Submit manuscript

Abstract

Extradiol dioxygenases facilitate microbial aerobic degradation of catechol and its derivatives by activating molecular dioxygen and incorporating both oxygen atoms into their substrates. Experimental and theoretical studies have focused on the mechanism of the reaction at the active site. However, whether the catalytic rate is limited by O2 access to the active site has not yet been explored. Here, we choose a recently solved X-ray structure of homoprotocatechuate 2,3-dioxygenase as a typical example to determine potential pathways for O2 migration from the solvent into the enzyme center. On the basis of the trajectories of two 10-ns molecular dynamics simulations, implicit ligand sampling was used to calculate the 3D free energy map for O2 inside the protein. The energetically optimal routes for O2 diffusion were identified for each subunit of the homotetrameric protein structure. The O2 tunnels formed because of thermal fluctuations were also characterized by connecting elongated cavities inside the protein. By superimposing the favorable O2 tunnels on to the free energy map, both energetically and geometrically preferred O2 pathways were determined, as also were the amino acids that may be critical for O2 passage along these paths. Our results demonstrate that identical subunits possess quite distinct O2 tunnels. The order of O2 affinity of these tunnels is generally consistent with the order of the catalytic rate of each subunit. As a consequence, the probability of finding the reaction product is highest in the subunit containing the highest O2 affinity pathway.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Abu-Omar MM, Loaiza A, Hontzeas N (2005) Reaction mechanisms of mononuclear non-heme iron oxygenases. Chem Rev 105:2227–2252

    Article  CAS  PubMed  Google Scholar 

  • Berman HM, Westbrook J, Feng Z, Gilliland G, Bhat TN, Weissig H, Shindyalov IN, Bourne PE (2000) The protein data bank. Nucleic Acids Res 28:235–242

    Article  CAS  PubMed  Google Scholar 

  • Bugg TDH (2003) Dioxygenase enzymes: catalytic mechanisms and chemical models. Tetrahedron 59:7075–7101

    Article  CAS  Google Scholar 

  • Bugg TDH, Lin G (2001) Solving the riddle of the intradiol and extradiol catechol dioxygenases: how do enzymes control hydroperoxide rearrangements? Chem Commun 941–952

  • Cohen J, Schulten K (2007) O2 migration pathways are not conserved across proteins of a similar fold. Biophys J 93:3591–3600

    Article  CAS  PubMed  Google Scholar 

  • Cohen J, Kim K, King P, Seibert M, Schulten K (2005) Finding gas diffusion pathways in proteins: application to O2 and H2 transport in CpI [FeFe]-hydrogenase and the role of packing defects. Structure 13:1321–1329

    Article  CAS  PubMed  Google Scholar 

  • Cohen J, Arkhipov A, Braun R, Schulten K (2006) Imaging the migration pathways for O2, CO, NO, and Xe inside myoglobin. Biophys J 91:1844–1857

    Article  CAS  PubMed  Google Scholar 

  • Cohen J, Olsen KW, Schulten K (2008) Finding gas migration pathways in proteins using implicit ligand sampling. Methods Enzymol 437:439–457

    Article  CAS  PubMed  Google Scholar 

  • Costas M, Mehn MP, Jensen MP, Que LJr (2004) Dioxygen activation at mononuclear nonheme iron active sites: enzymes, models, and intermediates. Chem Rev 104:939–986

    Article  CAS  PubMed  Google Scholar 

  • Daigle R, Guertin M, Lagüe P (2009) Structural characterization of the tunnels of Mycobacterium tuberculosis truncated hemoglobin N from molecular dynamics simulations. Proteins 75:735–747

    Article  CAS  PubMed  Google Scholar 

  • Damborský J, Petřek M, Banáš P, Otyepka M (2007) Identification of tunnels in proteins, nucleic acids, inorganic materials and molecular ensembles. Biotechnol J 2:62–67

    Article  PubMed  Google Scholar 

  • Deeth RJ, Bugg TDH (2003) A density functional investigation of the extradiol cleavage mechanism in non-heme iron catechol dioxygenases. J Biol Inorg Chem 8:409–418

    CAS  PubMed  Google Scholar 

  • Fiorucci S, Golebiowski J, Cabrol-Bass D, Antonczak S (2006) Molecular simulations reveal a new entry site in quercetin 2,3-dioxygenase. A pathway for dioxygen? Proteins 64:845–850

    Article  CAS  PubMed  Google Scholar 

  • Georgiev V, Borowski T, Blomberg MRA, Siegbahn PEM (2008) A comparison of the reaction mechanism of iron- and manganese-containing 2,3-HPCD: an important spin transition for manganese. J Biol Inorg Chem 13:929–940

    Article  CAS  PubMed  Google Scholar 

  • Humphrey W, Dalke A, Schulten K (1996) VMD—visual molecular dynamics. J Mol Graph 14:33–38

    Article  CAS  PubMed  Google Scholar 

  • Johnson BJ, Cohen J, Welford RW, Pearson AR, Schulten K, Klinman JP, Wilmot CM (2007) Exploring molecular oxygen pathways in Hansenula polymorpha copper-containing amine oxidase. J Biol Chem 282:17767–17776

    Article  CAS  PubMed  Google Scholar 

  • Kita A, Kita S, Fujisawa I, Inaka K, Ishida T, Horiike K, Nozaki M, Miki K (1999) An archetypical extradiol-cleaving catecholic dioxygenase: the crystal structure of catechol 2,3-dioxygenase (metapyrocatechase) from Pseudomonas putida mt-2. Structure 17:25–34

    Article  Google Scholar 

  • Kovaleva EG, Lipscomb JD (2007) Crystal structures of Fe2+ dioxygenase superoxo, alkylperoxo, and bound product intermediates. Science 316:453–457

    Article  CAS  PubMed  Google Scholar 

  • Kovaleva EG, Lipscomb JD (2008) Intermediate in the O–O bond cleavage reaction of an extradiol dioxygenase. Biochemistry 47:11168–11170

    Article  CAS  PubMed  Google Scholar 

  • Kovaleva EG, Neibergall MB, Chakrabarty S, Lipscomb JD (2007) Finding intermediates in the O2 activation pathways of non-heme iron oxygenases. Acc Chem Res 40:475–483

    Article  CAS  PubMed  Google Scholar 

  • Kryatov SV, Rybak-Akimova EV (2005) Kinetics and mechanisms of formation and reactivity of non-heme iron oxygen intermediates. Chem Rev 105:2175–2226

    Article  CAS  PubMed  Google Scholar 

  • Leroux F, Dementin S, Burlat B, Cournac L, Volbeda A, Champ S, Martin L, Guigliarelli B, Bertrand P, Fontecilla-Camps J, Rousset M, Léger C (2008) Experimental approaches to kinetics of gas diffusion in hydrogenase. Proc Natl Acad Sci USA 105:11188–11193

    Article  CAS  PubMed  Google Scholar 

  • Lipscomb JD (2008) Mechanism of extradiol aromatic ring-cleaving dioxygenases. Curr Opin Struct Biol 18:644–649

    Article  CAS  PubMed  Google Scholar 

  • MacKerell AD, Bashford D, Bellott M, Dunbrack RL, Evanseck JD, Field MJ, Fischer S, Gao J, Guo H, Ha S, Joseph-McCarthy D, Kuchnir L, Kuczera K, Lau FTK, Mattos C, Michnick S, Ngo T, Nguyen DT, Prodhom B, Reiher WE, Roux B, Schlenkrich M, Smith JC, Stote R, Straub J, Watanabe M, Wiorkiewicz-Kuczera J, Yin D, Karplus M (1998) All-atom empirical potential for molecular modeling and dynamics studies of proteins. J Phys Chem B 102:3586–3616

    Article  CAS  Google Scholar 

  • Morris GM, Goodsell DS, Halliday RS, Huey R, Hart WE, Belew RK, Olson AJ (1998) Automated docking using a lamarckian genetic algorithm and empirical binding free energy function. J Comput Chem 19:1639–1662

    Article  CAS  Google Scholar 

  • Orlowski S, Nowak W (2007) Oxygen diffusion in minihemoglobin from Cerebratulus lacteus: a locally enhanced sampling study. Theor Chem Acc 117:253–258

    Article  CAS  Google Scholar 

  • Petřek M, Otyepka M, Banáš P, Košinová P, Koča J, Damborský J (2006) CAVER: a new tool to explore routes from protein clefts, pockets and cavities. BMC Bioinformatics 7:316

    Article  PubMed  Google Scholar 

  • Phillips JC, Braun R, Wang W, Gumbart J, Tajkhorshid E, Villa E, Chipot C, Skeel RD, Kale L, Schulten K (2005) Scalable molecular dynamics with NAMD. J Comput Chem 26:1781–1802

    Article  CAS  PubMed  Google Scholar 

  • Ruscio JZ, Kumar D, Shukla M, Prisant MG, Murali TM, Onufriev AV (2008) Atomic level computational identification of ligand migration pathways between solvent and binding site in myoglobin. Proc Natl Acad Sci USA 105:9204–9209

    Article  CAS  PubMed  Google Scholar 

  • Saam J, Ivanov I, Walther M, Holzhütter HG, Kuhn H (2007) Molecular dioxygen enters the active site of 12/15-lipoxygenase via dynamic oxygen access channels. Proc Natl Acad Sci USA 104:13319–13324

    Article  CAS  PubMed  Google Scholar 

  • Siegbahn PEM, Haeffner F (2004) Mechanism for catechol ring-cleavage by non-heme iron extradiol dioxygenases. J Am Chem Soc 126:8919–8932

    Article  CAS  PubMed  Google Scholar 

  • Solomon EI, Brunold TC, Davis MI, Kemsley JN, Lee SK, Lehnert N, Neese F, Skulan AJ, Yang YS, Zhou J (2000) Geometric and electronic structure/function correlations in non-heme iron enzymes. Chem Rev 100:235–349

    Article  CAS  PubMed  Google Scholar 

  • Solomon EI, Decker A, Lehnert N (2003) Non-heme iron enzymes: contrasts to heme catalysis. Proc Natl Acad Sci USA 100:3589–3594

    Article  CAS  PubMed  Google Scholar 

  • Teeter MM (2004) Myoglobin cavities provide interior ligand pathway. Protein Sci 13:313–318

    Article  CAS  PubMed  Google Scholar 

  • Teixeira VH, Baptista AM, Soares CM (2006) Pathways of H2 toward the active site of [NiFe]-hydrogenase. Biophys J 91:2035–2045

    Article  CAS  PubMed  Google Scholar 

  • Tomita A, Sato T, Ichiyanagi K, Nozawa S, Ichikawa H, Chollet M, Kawai F, Park SY, Tsuduki T, Yamato T, Koshihara SY, Adachi S (2009) Visualizing breathing motion of internal cavities in concert with ligand migration in myoglobin. Proc Natl Acad Sci USA 106:2612–2616

    Article  CAS  PubMed  Google Scholar 

  • van den Bosch M, Swart M, van Gunsteren WF, Canters GW (2004) Simulation of the substrate cavity dynamics of quercetinase. J Mol Biol 344:725–738

    Article  PubMed  Google Scholar 

  • Wallar BJ, Lipscomb JD (1996) Dioxygen activation by enzymes containing binuclear non-heme iron clusters. Chem Rev 96:2625–2657

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by the Youth Foundation of DLUT (893103), National Natural Science Foundation (10772042), and the National Basic Research Program (2009CB918501) of China.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xicheng Wang.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 327 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Xu, L., Zhao, W. & Wang, X. Finding molecular dioxygen tunnels in homoprotocatechuate 2,3-dioxygenase: implications for different reactivity of identical subunits. Eur Biophys J 39, 327–336 (2010). https://doi.org/10.1007/s00249-009-0551-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00249-009-0551-9

Keywords

Navigation