Skip to main content
Log in

Effectors of the frequency of calcium oscillations in HEK-293 cells: wavelet analysis and a computer model

  • Original Paper
  • Published:
European Biophysics Journal Aims and scope Submit manuscript

Abstract

Oscillations of the intracellular concentration of Ca2+ in cultured HEK-293 cells, which heterologously expressed the calcium-sensing receptor, were recorded with the fluorophore Fura-2 using fluorescence microscopy. HEK-293 cells are extremely sensitive to small perturbations in extracellular calcium concentrations. Resting cells were attached to cover slips and perifused with saline solution containing physiologically relevant extracellular Ca2+ concentrations in the range 0.5–5 mM. Acquired digitized images of the cells showed oscillatory fluctuations in the intracellular Ca2+ concentration over the time course, and were processed as a function of the change in Fura-2 excitation ratio and frequency at 12–37°C. Newly developed data processing techniques with wavelet analysis were used to estimate the frequency at which the rectified sinusoidal oscillations occurred; we estimated ~4 min−1 under normal conditions. Temperature variations revealed an Arrhenius relationship in oscillation frequency. A critical Ca2+ concentration of ~2 mM was estimated, below which oscillations did not occur. These data were used to develop a kinetic model of the system that was simulated using Mathematica; kinetic parameter values were adjusted to match the experimentally observed oscillations of intracellular Ca2+ concentration as a function of extracellular Ca2+ concentration, and temperature; and from these, limit cycles were obtained and control coefficients were estimated for all parameters.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Abbreviations

1D:

One-dimensional

2D:

Two-dimensional

ATP:

Adenosine triphosphate

CaR:

Calcium sensing receptor

\( C_{\text{p}}^{\text{f}} \) :

Control coefficient, frequency with respect to parameter value

DOG:

Derivative of a Gaussian

EGTA:

Ethylene glycol tetra acetic acid

ER:

Endoplasmic reticulum

GTP:

Guanosine triphosphate

HEK-293:

Human embryonic kidney cells, Graham’s experiment number 293

IP3 :

Inositol trisphosphate

IP3R:

IP3 receptor

K d :

Dissociation constant

K M :

Michaelis constant

PKC:

Protein kinase C

PMCA:

Plasma membrane Ca2+-ATPase

SERCA:

Sarcoplasmic/endoplasmic reticulum Ca2+-ATPase

t :

Time

References

Download references

Acknowledgments

For this work, P.W.K. thanks the Australian Research Council for a Discovery Project grant and A.D.C. thanks the Australian National Health and Medical Research Council for a project grant. Dr. Michael Breakspear is thanked for expert advice on wavelet analysis. D.S. thanks the University of Sydney for a Postgraduate Award, and S.C.B. acknowledges a University of Sydney PhD Scholarship.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Philip W. Kuchel.

Additional information

“Proteins, membranes and cells: the structure-function nexus.” Contributions from the annual scientific meeting (including a special symposium in honour of Professor Alex Hope of Flinders University, South Australia) of the Australian Society for Biophysics held in Canberra, ACT, Australia, 28 September–1 October 2008.

Appendix

Appendix

Appendix 1

Mathematica program that solves the array of differential equations given in Eq. 12 to simulate the oscillations in Ca2+ concentration in HEK-293 cells.

  • caConc = 5,000; (* Ca2+ concentration in μ mol L−1 *)

  • temp = 37; (* Temperature of the system in Celsius *)

  • tempScalar = 0.173 + 0.00160882 × e 0.1684 temp; (* Scalar value to account for frequency changes affected by temperature *)

  • V c = 0.33; V ER = 0.33; V e = 0.33; (* Cytosolic, ER, and extracellular volume ratios *)

  • γ = 3.0; (* Cooperativity coefficient *)

  • ϕ = 2.0; (* Hill coefficient for the PMCA *)

  • β = 0.4; (* Stoichiometry coefficient *)

  • ρ = 0.4; (* Fraction of extruded Ca2+ available to interact with the CaR *)

  • \( v_{1} = {\frac{3.854}{{{\text{caConc}}(1 + e^{{6 - 0.003{\text{caConc}}}} )}}}{\text{tempScalar}}; \) (* Velocity of Ca2+ supply with logisitic-equation form to simulate critical Ca2+ concentration *)

  • k 1 = 3740.8 × tempScalar,

  • k −1 = 115.22 × tempScalar,

  • k 2 = 53.54 × tempScalar,

  • k 3 = 1007.4 × tempScalar,

  • k −3 = 18.1 × tempScalar,

  • k 4 = 58.35 × tempScalar,

  • k −4 = 633.01 × tempScalar,

  • k 5 = 500 × tempScalar,

  • K PMCA = 0.425;

  • V PMCA = 28 × tempScalar;

  • K SERCA = 0.18;

  • ca[t] = caConc,

  • v 2 = 53.54 × tempScalar; (* Velocity of IP3 degradation *)

  • sol = NDSolve[{

  • ca[t] = caConc,

  • \( s^{\prime}_{1} [t] = v_{1} {\text{ca}}[t] - {\frac{{V_{\text{c}} }}{{V_{\text{e}} }}}k_{1} s_{1} [t]x_{1} [t] + {\frac{{V_{\text{c}} }}{{V_{\text{e}} }}}k_{ - 1} x_{2} [t] + {\frac{{V_{\text{c}} }}{{V_{\text{e}} }}}\rho {\frac{{V_{\text{PMCA}} s_{4} [t]^{\phi } }}{{K_{\text{PMCA}}^{\phi } + s_{4} [t]^{\phi } }}}, \) (* s 1 is extracellular [Ca2+] sub-pool *)

  • \( s^{\prime}_{2} [t] = k_{2} x[t] - k_{3} s_{2} [t]^{\gamma } e_{1} [t] + \gamma k_{ - 3} x_{1} [t] - v_{2} s_{2} [t] + k_{ - 4} x_{3} [t] - {\frac{{V_{\text{ER}} }}{{V_{\text{c}} }}}k_{4} s_{2} [t]e_{2} [t], \) (* s 2 is [IP3] *)

  • \( s^{\prime}_{3} [t] = {\frac{{V_{\text{c}} }}{{V_{\text{ER}} }}}{\frac{{V_{\text{SERCA}} s_{4} [t]}}{{K_{\text{SERCA}} + s_{4} [t]}}}\;{\frac{1}{{s_{3} [t]}}} - \beta k_{5} s_{3} [t]^{\beta } x_{3} [t], \) (* s 3 is ER [Ca2+] *)

  • \( s^{\prime}_{4} [t] = - {\frac{{V_{\text{c}} }}{{V_{\text{ER}} }}}{\frac{{V_{\text{SERCA}} s_{4} [t]}}{{K_{\text{SERCA}} + s_{4} [t]}}}\;{\frac{1}{{s_{3} [t]}}} - {\frac{{V_{\text{PMCA}} s_{4} [t]^{\phi } }}{{K_{\text{PMCA}}^{\phi } + s_{4} [t]^{\phi } }}} + {\frac{{V_{\text{ER}} }}{{V_{\text{c}} }}}\beta k_{5} s_{3} [t]^{\beta } x_{3} [t], \) (* s 4 is cytosolic [Ca2+] *)

  • \( x^{\prime}_{1} [t] = - {\frac{{V_{\text{e}} }}{{V_{\text{c}} }}}k_{1} s_{1} [t]x_{1} [t] + (k_{ - 1} + k_{2} )x_{2} [t] + k_{3} e_{1} [t]s_{2} [t]^{\gamma } - k_{ - 3} x_{1} [t], \) (* x 1 is [\( E_{1} S_{2}^{\gamma } \)] *)

  • \( x^{\prime}_{2} [t] = {\frac{{V_{\text{e}} }}{{V_{\text{c}} }}}k_{1} s_{1} [t]x_{1} [t] - (k_{ - 1} + k_{2} )x_{2} [t], \) (* x 2 is [\( S_{1} E_{1} S_{2}^{\gamma } \)] *)

  • \( x^{\prime}_{3} [t] = - {\frac{{V_{\text{c}} }}{{V_{\text{ER}} }}}k_{ - 4} x_{3} [t] + {\frac{{V_{\text{c}} }}{{V_{\text{ER}} }}}k_{4} s_{2} [t]e_{2} [t], \) (* x 3 is [\( E_{2} S_{2} \)] *)

  • \( e^{\prime}_{1} [t] = - k_{3} e_{1} [t]s_{2} [t]^{\gamma } + k_{ - 3} x_{1} [t], \) (* e 1 is [CaR] *)

  • \( e^{\prime}_{2} [t] = k_{ - 4} x_{3} [t] - {\frac{{V_{\text{c}} }}{{V_{\text{ER}} }}}k_{4} s_{2} [t]e_{2} [t], \) (* e 2 is [IP3R] *)

  • s 1[0] = 0.5, s 2[0] = 0.44, s 3[0] = 500, s 4[0] = 0.0, x 1[0] = 0.0, x 2[0] = 0.0,

  • x 3[0] = 0.0, ca[0] = caConc, e 1[0] = 0.16, e 2[0] = 0.2,

  • {s 1, s 2, s 3, s 4, x 1, x 2, x 3, e 1, e 2, ca},

  • {t, 0, 400}, MaxSteps → 20,000, MaxStepSize → 0.01,

  • MaxStepFraction → 0.01, StartingStepSize → 0.1]; (* “sol” contains the solution to the kinetic equations with the given starting conditions for t = 0–100 s. *)

  • Plot[s 4[t]/.sol,{t, 0, 400},PlotRange → {{0, 400},{0, 0.4}}, PlotPoints → 2,000] (* Plot the intracellular [Ca2+], S 4 *)

Appendix 2

Program written in Mathematica for the wavelet analysis used in the present work:

  • data = Import[″data.dat″]; (* Import the data set as a list of values *)

  • Hw := If [ω > 0, 1, 0]; (* Definition of the Heaviside step function *)

  • ω 0 = 6; (* Nondimensional frequency of the wavelet *)

  • \( \psi f[\omega_{ - } ,s_{ - } ] = \sqrt {{\frac{2\pi s}{{{\delta}t}}}} \pi^{{ - {\frac{1}{4}}}} {\text{Hw}}\,e^{{{\frac{{ - (s\omega - \omega_{0} )^{2} }}{2}}}} ; \) (* Definition of the Morlet wavelet as a function of ω, time and s, the scale *)

  • \( {\delta}t = {\frac{1}{1.087454}}; \) (* Difference in time between successive data points. For our Fura-2 experiments, this was slightly over 1 s *)

  • s 0 = 2δt; (* Value of the first wavelet scale *)

  • δj = 0.125; (* Difference in power between successive wavelet scales *)

  • nN = Length[data]; (* Number of data points in the data set *)

  • fdata = Fourier[data]; (* Calculate the Fourier transform of the data set *)

  • J = 60; (* Number of scales to include in the wavelet transform *)

  • wt = Table[Table[0,{x, 0, nN}],{y, 1, J};] (* Initialization of the table receiving the wavelet transform result *)

  • For[j = 0, j < J, j++], {pdata = 

  • $$ {\text{Table}}\left[ {\psi f\left[ {\omega ,2{\delta}t \times 2^{{j{\delta}j}} } \right],\left\{ {\omega ,0,{\frac{2\pi }{{{\delta}t}}},{\frac{{\left( {{\frac{2\pi }{{{\delta}t}}}} \right)}}{{{\text{nN}} - 1}}}} \right\}} \right]//N; $$
  • \( wt[[j + 1]] = {\frac{{({\text{Abs}}[{\text{InverseFourier}}[{\text{fdata}} \times {\text{pdata}}]])^{2} }}{{{\text{Variance}}[{\text{pdata}}]}}}; \) (* Calculation and insertion of wavelet transform result *)

  • \( {\text{sca}} = {\text{Round}}\left[ {\sqrt 2 \left( {{\text{Table}}\left[ {2{\delta}t \times 2^{{j{\delta}j}} ,\,\{ j,0,J\} } \right]} \right) \times {\frac{1}{{{\delta}t}}}} \right.; \) (* Table of wavelet scales *)

  • coi = Table[Table[0,{x, 1, nN}],{y, 0, J − 1}];

  • Table[coi[[q, Table[x, {x, 1, sca[[q]]}]]] = Table[1,{x, 1, sca[[q]]}], {q, 1, J}; (* Initialization of the table receiving the cone of influence result *)

  • Table[coi[[q,Table[x,{x, Length[coi[[q]]] − sca[[q]] + 1, Length[coi[[q]]]}]]] = Table[1,{x, 1, sca[[q]]}], {q, 1, J}]; (* Calculation of cone of influence *)

  • coi = Mod[coi + 1,2]; (* Inversion of cone of influence *)

  • wtcoi = wt coi; (* Wavelet transform multiplied by cone of influence *)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Szekely, D., Brennan, S.C., Mun, HC. et al. Effectors of the frequency of calcium oscillations in HEK-293 cells: wavelet analysis and a computer model. Eur Biophys J 39, 149–165 (2009). https://doi.org/10.1007/s00249-009-0469-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00249-009-0469-2

Keywords

Navigation