Skip to main content
Log in

A two-dimensional spectrum analysis for sedimentation velocity experiments of mixtures with heterogeneity in molecular weight and shape

  • Original Paper
  • Published:
European Biophysics Journal Aims and scope Submit manuscript

Abstract

We report a model-independent analysis approach for fitting sedimentation velocity data which permits simultaneous determination of shape and molecular weight distributions for mono- and polydisperse solutions of macromolecules. Our approach allows for heterogeneity in the frictional domain, providing a more faithful description of the experimental data for cases where frictional ratios are not identical for all components. Because of increased accuracy in the frictional properties of each component, our method also provides more reliable molecular weight distributions in the general case. The method is based on a fine grained two-dimensional grid search over s and f/f 0, where the grid is a linear combination of whole boundary models represented by finite element solutions of the Lamm equation with sedimentation and diffusion parameters corresponding to the grid points. A Monte Carlo approach is used to characterize confidence limits for the determined solutes. Computational algorithms addressing the very large memory needs for a fine grained search are discussed. The method is suitable for globally fitting multi-speed experiments, and constraints based on prior knowledge about the experimental system can be imposed. Time- and radially invariant noise can be eliminated. Serial and parallel implementations of the method are presented. We demonstrate with simulated and experimental data of known composition that our method provides superior accuracy and lower variance fits to experimental data compared to other methods in use today, and show that it can be used to identify modes of aggregation and slow polymerization.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Brookes EH, Demeler B (2006) Genetic algorithm optimization for obtaining accurate molecular weight distributions from sedimentation velocity experiments. In: Wandrey C, Cölfen H (eds) Analytical ultracentrifugation VIII, Springer Progr Colloid Polym Sci 131:78–82

  • Brookes EH, Demeler B (2007) Parsimonious regularization using genetic algorithms applied to the analysis of analytical ultracentrifugation experiments. GECCO proceedings ACM 978-1-59593-697-4/07/0007

  • Brookes EH, Boppana RV, Demeler B (2006) Computing large sparse multivariate optimization problems with an application in biophysics. Supercomputing ‘06 ACM 0-7695-2700-0/06

  • Brown PH, Schuck P (2006) Macromolecular size-and-shape distributions by sedimentation velocity analytical ultracentrifugation. Biophys J 90(12):4651–4661. doi:10.1529/biophysj.106.081372

    Article  CAS  PubMed  Google Scholar 

  • Cao W, Demeler B (2005) Modeling analytical ultracentrifugation experiments with an adaptive space-time finite element solution of the Lamm equation. Biophys J 89(3):1589–1602. doi:10.1529/biophysj.105.061135

    Article  CAS  PubMed  Google Scholar 

  • Cao W, Demeler B (2008) Modeling analytical ultracentrifugation experiments with an adaptive space-time finite element solution for multi-component reacting systems. Biophys J 95(1):54–65. doi:10.1529/biophysj.107.123950

    Article  CAS  PubMed  Google Scholar 

  • Dam J, Velikovsky CA, Mariuzza RA, Urbanke C, Schuck P (2005) Sedimentation velocity analysis of heterogeneous protein–protein interactions: Lamm equation modeling and sedimentation coefficient distributions c(s). Biophys J 89(1):619–634. doi:10.1529/biophysj.105.059568

    Article  CAS  PubMed  Google Scholar 

  • Demeler B (2005) UltraScan—a comprehensive data analysis software package for analytical ultracentrifugation experiments. In: Scott DJ, Harding SE, Rowe AJ (eds) Modern analytical ultracentrifugation: techniques and methods. Royal Society of Chemistry, UK, pp 210–229

  • Demeler B (2008) UltraScan version 9.9—a multi-platform analytical ultracentrifugation data analysis software package: http://www.ultrascan.uthscsa.edu

  • Demeler B, Brookes E (2008) Monte Carlo analysis of sedimentation experiments. Colloid Polym Sci 286(2):129–137. doi:10.1007/s00396-007-1699-4

    Article  CAS  Google Scholar 

  • Demeler B, Saber H (1998) Determination of molecular parameters by fitting sedimentation data to finite-element solutions of the Lamm equation. Biophys J 74(1):444–454. doi:10.1016/S0006-3495(98)77802-6

    Article  CAS  PubMed  Google Scholar 

  • Demeler B, van Holde KE (2004) Sedimentation velocity analysis of highly heterogeneous systems. Anal Biochem 335(2):279–288. doi:10.1016/j.ab.2004.08.039

    Article  CAS  PubMed  Google Scholar 

  • Johnson ML, Correia JJ, Yphantis DA, Halvorson HR (1981) Analysis of data from the analytical ultracentrifuge by nonlinear least squares techniques. Biophys J 36:575–588. doi:10.1016/S0006-3495(81)84753-4

    Article  CAS  PubMed  Google Scholar 

  • Lamm O (1929) Die Differentialgleichung der Ultrazentrifugierung. Ark Mater Astr Fys 21B:1–4

    Google Scholar 

  • Lawson CL, Hanson RJ (1974) Solving least squares problems. Prentice-Hall, Englewood Cliffs

    Google Scholar 

  • Manning GS (1969) Limiting laws and counterion condensation in polyelectrolyte solutions: I. Colligative properties. J Chem Phys 51:933–942

    Google Scholar 

  • Schuck P (1998) Sedimentation analysis of noninteracting and self-associating solutes using numerical solutions to the Lamm equation. Biophys J 75(3):1503–1512

    Article  CAS  PubMed  Google Scholar 

  • Schuck P (2000) Size-distribution analysis of macromolecules by sedimentation velocity ultracentrifugation and Lamm equation modeling. Biophys J 78(3):1606–1619. doi:10.1016/S0006-3495(00)76713-0

    Article  CAS  PubMed  Google Scholar 

  • Schuck P (2003) On the analysis of protein self-association by sedimentation velocity analytical ultracentrifugation. Anal Biochem 320(1):104–124. doi:10.1016/S0003-2697(03)00289-6

    Article  CAS  PubMed  Google Scholar 

  • Schuck P, Demeler B (1999) Direct sedimentation analysis of interference optical data in analytical ultracentrifugation. Biophys J 76(4):2288–2296. doi:10.1016/S0006-3495(99)77384-4

    Article  CAS  PubMed  Google Scholar 

  • Schuck P, MacPhee CE, Howlett GJ (1998) Determination of sedimentation coefficients for small peptides. Biophys J 74(1):466–474. doi:10.1016/S0006-3495(98)77804-X

    Article  CAS  PubMed  Google Scholar 

  • Stafford W (1992) Boundary analysis in sedimentation transport experiments: a procedure for obtaining sedimentation coefficient distributions using the time derivative of the concentration profile. Anal Biochem 203:295–301. doi:10.1016/0003-2697(92)90316-Y

    Article  CAS  PubMed  Google Scholar 

  • Todd GP, Haschemeyer RH (1981) General solution to the inverse problem of the differential equation of the ultracentrifuge. Proc Natl Acad Sci USA 78(11):6739–6743

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work and the development of UltraScan is supported by NIH Grant RR022200 (NCRR) to B. D.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Borries Demeler.

Additional information

AUC&HYDRO 2008—Contributions from 17th International Symposium on Analytical Ultracentrifugation and Hydrodynamics, Newcastle, UK, 11–12 September 2008.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Brookes, E., Cao, W. & Demeler, B. A two-dimensional spectrum analysis for sedimentation velocity experiments of mixtures with heterogeneity in molecular weight and shape. Eur Biophys J 39, 405–414 (2010). https://doi.org/10.1007/s00249-009-0413-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00249-009-0413-5

Keywords

Navigation