Skip to main content
Log in

Effect of polar and non-polar carotenoids on Xanthophylomyces dendrorhous membranes by EPR

  • Original Paper
  • Published:
European Biophysics Journal Aims and scope Submit manuscript

Abstract

The red yeast Xanthophyllomyces dendrorhous is one of the microbiological production systems for natural carotenoids. High-performance liquid chromatography (HPLC) and electron paramagnetic resonance spectroscopy (EPR) experiments were performed on X. dendrorhous membranes in order to study the effect of incorporation rates of different type of carotenoids. In the case of fluid-phase membranes, it was found that polar carotenoids, such as astaxanthin and cis-astaxanthin, increased the EPR order parameter and decreased the motional freedom and phase-transition temperature. In contrast the non-polar carotenoids β-cryptoxanthin and β-carotene decreased the EPR order parameter and increased motional freedom and phase-transition temperature. A noteworthy coherence was observed between the polarities of the strains and the phase-transition temperatures.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Andrewes AG, Phaff HJ, Starr MP (1976) Carotenoids of Phaffia rhodozyma, a red-pigmented fermenting yeast. Phytochemistry 15:1003–1007

    Article  Google Scholar 

  • Baltschun D, Beutner S, Biriviba K, Stenhorst F (1997) Singlet oxygen quenching abilities of carotenoids. Liebigs Ann/Recueil 1887–1893

  • Belagyi J, Pas M, Raspor P, Pesti M, Pali T (1999) Effect of hexavalent chromium on eukaryotic plasma membrane studied by EPR spectroscopy. Biochim Biophys Acta 1421:175–182

    Article  Google Scholar 

  • Deli J, Molnar P (2002) Paprika carotenoids: analysis, isolation, structure elucidation. Curr Org Chem 6:1197–1219

    Article  Google Scholar 

  • Farkas N, Pesti M, Belagyi J (2003) Effect of hexavalent chromium on the plasma membranes of sensitive and tolerant mutants of Schizosaccharomyces pombe. An EPR study. Biochim Biophys Acta 1611:217–222

    Article  Google Scholar 

  • Fraser PD, Bramley PM (2004) The biosynthesis and nutritional uses of carotenoids. Prog Lipid Res 43:228–265

    Article  Google Scholar 

  • Gabrielska J, Gruszecki WI (1996) Zeaxanthin (dihydroxy-β-carotene) but not β-carotene rigidifies lipid membranes: a 1H-NMR study of carotenoids-egg phosphatidylcholine liposomes. Biochim Biophys Acta 1285:167–174

    Article  Google Scholar 

  • Gaffney BJ (1976) Practical consideration for calculation of order parameters for fatty acid or phospholipids spin labels in membranes. In: Berliner LJ (ed) Spin labeling: theory and applications, vol 1. Academic Press, New York, pp 567–571

    Google Scholar 

  • Girard J, Falconnier B, Bricout J, Vladescu B (1994) β-Carotene producing mutants of Phaffia rhodozyma. Microbiol Biotechnol 41:183–191

    Article  Google Scholar 

  • Goldman SA, Bruno GV, Freed JH (1972) Estimating slow-motional rotational correlation times for nitroxides by electron spin resonance. J Phys Chem 76:1858–1869

    Article  Google Scholar 

  • Goto S, Kogure K, Abe K, Kimata Y, Kitahama K, Yamashita E, Terada H (2001), Efficient radical trapping at the surface and inside the phospholipids membrane is responsible for highly potent antiperoxidative activity of the carotenoid astaxanthin. Biochim Biophys Acta 1512:251–258

    Article  Google Scholar 

  • Halliwell B, Gutteridge JMC (1999) Free radicals in biology and medicine. Oxford University Press, Oxford

    Google Scholar 

  • Higuera-Ciapara I, Felix-Valenzuela L, Goycoolea FM (2006) Astaxanthin: a review of its chemistry and applications. Crit Rev Food Sci Nutr 46:185–196

    Article  Google Scholar 

  • Isralachvili J, Sjönsten J, Ericsson LEG, Mhrström M, Graslund A, Ehrenberg A (1974) Theoretical analysis of the molecular motion of spin labels in membranes. ESR spectra of labeled Bacillus subtilis membranes. Biochim Biophys Acta 339:164–172

    Article  Google Scholar 

  • Jezowska I, Wolak A, Gruszecki WI, Strzalka K (1994) Effect of β-carotene on structural and dynamic properties of model phosphatidylcholine membranes. II. A 31P-NMR and 13C-NMR study. Biochim Biophys Acta 1194:143–148

    Article  Google Scholar 

  • Johnson EA, Lewis MJ (1979) Astaxanthin formation by the yeast Phaffia rhodozyma. J Gen Microbiol 115:173–183

    Google Scholar 

  • Jones RH, Molitoris BA (1984) A statistical method for determining the breakpoint of two lines. Anal Biochem 141:287–290

    Article  Google Scholar 

  • Lee J, Dawes I, Roe JH (1995) Adaptive response of Schizosaccharomyces pombe to hydrogen peroxide and menadion. Microbiology 141:3127–3132

    Article  Google Scholar 

  • Libkind D, Brizzio S, Broock M (2003) Rhodotorula mucilaginosa, a carotenoid producing yeast strain from a Patagonian high-altitude lake. Folia Microbiol 49:19–25

    Article  Google Scholar 

  • Lim BP, Nagao A, Terao J, Tanaka K, Suzuki T, Takama K (1992) Antioxidant activity of xanthophylls on peroxyl radical-mediated phospholipids peroxidation. Biochim Biophys Acta 1126:178–184

    Google Scholar 

  • Marsh D (1981) Electron spin resonance: spin labels. In: Grell E (ed) Membrane spectroscopy, Springer, Berlin, pp 52–198

  • Mortensen A, Skibsted LH, Sampson J, Rice-Evans C, Everett SA (1997) Comparative mechanisms and rates of free radical scavenging by carotenoid antioxidants. FEBS Lett 418:91–97

    Article  Google Scholar 

  • Niewska AW, Draus J, Subczynski WK (2003) Is a fluid-mosaic model of biological membranes fully relevant? Studies on lipid organization in model and biological membranes. Cell Mol Biol Lett 8:147–159

    Google Scholar 

  • Palagyi Zs, Nagy Á, Vágvölgyi Cs, Ferenczy L (1995) A new mutation protocol for obtaining mutants of the yeast Phaffia rhodozyma. Biotechnol Technol 9:401–402

    Article  Google Scholar 

  • Palagyi Zs, Linka TB, Papp T, Vágvölgyi Cs (2006) Isolation and characterization of Xanthophyllomyces dendrorhous mutants with altered carotenoid content. Acta Aliment Hung 35:223–228

    Article  Google Scholar 

  • Pocsi I, Prade RA, Penninclex MJ (2004) Glutathione, a metabolite in fungi. Adv Microb Physiol 49:1–76

    Article  Google Scholar 

  • Rengel D, Díez-Navajas A, Serna-Rico A, Veiga P, Muga A, Milicua JCG (2000) Exogenously incorporated ketocarotenoids in large unilamellar vesicles. Protective activity against peroxidation. Biochim Biophys Acta 1463:179–187

    Article  Google Scholar 

  • Schroeder WA, Johnson EA (1993) Antioxidant role of carotenoids in Phaffia rhodozyma. J Gen Microbiol 139:907–912

    Google Scholar 

  • Schroeder WA, Johnson EA (1995) Single oxygen and peroxyl radicals regulate carotenoid biosynthesis in Phaffia rhodozyma. J Biol Chem 270:18374–18379

    Article  Google Scholar 

  • Sedmak JJ, Weerasinghe DK, Jolly SO (1990) Extraction and quantitation of astaxanthin from Phaffia rhodozyma. Biotechnol Technol 4:107–112

    Article  Google Scholar 

  • Strazalka K, Gruszecki WI (1994) Effect of β-carotene on structural and dynamic properties of model phosphatidylcholine membranes. I. An EPR spin label study. Biochim Biophys Acta 1194:138–142

    Article  Google Scholar 

  • Subczynski WK, Wisniewska A (2000) Physical properties of lipid bilayer membranes: relevance to membrane biological functions. Cell Mol Biol Lett 47:613–623

    Google Scholar 

  • Subczynski WK, Markowska E, Gruszecki WI (1992) Effect of polar carotenoids on dimyristoylphosphatidylcholine membranes: a spin-label study. Biochim Biophys Acta 1105:97–108

    Article  Google Scholar 

  • Subczynski WK, Markowska E, Sielewiesiuk J (1993) Spin-label studies on phosphatidylcholine-polar carotenoids membranes: effect of alkyl-chain length and unsaturation. Biochim Biophys Acta 1150:173–181

    Article  Google Scholar 

  • Visser H, Ooyen AJJ, Verdoes JC (2003) Metabolic engineering of the astaxanthin-biosynthetic pathway of Xanthophyllomyces dendrorhous. FEMS Yeast Res 4:221–231

    Article  Google Scholar 

  • Wataru M (1991) Biological functions and activities of animal carotenoids. Pure Appl Chem 63:141–146

    Article  Google Scholar 

  • Wisniewska A, Subczynski WK (1998) Effect of polar carotenoids on the shape of the hydrophobic barrier of phospholipids bilayers. Biochim Biophys Acta 1368:235–246

    Article  Google Scholar 

  • Woodall AA, Britton G, Jackson MJ (1997) Carotenoids and protection of phospholipids in solution or in liposomes against oxidation by peroxyl radicals: relationship between carotenoid structure and protective ability. Biochim Biophys Acta 1336:575–586

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Blasko.

Additional information

Regional Biophysics Conference of the National Biophysical Societies of Austria, Croatia, Hungary, Italy, Serbia, and Slovenia.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Blasko, A., Belagyi, J., Dergez, T. et al. Effect of polar and non-polar carotenoids on Xanthophylomyces dendrorhous membranes by EPR. Eur Biophys J 37, 1097–1104 (2008). https://doi.org/10.1007/s00249-008-0289-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00249-008-0289-9

Keywords

Navigation