Skip to main content
Log in

Fatty acid interdigitation in stratum corneum model membranes: a neutron diffraction study

  • Original Paper
  • Published:
European Biophysics Journal Aims and scope Submit manuscript

Abstract

The influence of the chain length of the free fatty acid (FFA) in a stratum corneum (SC) lipid model membrane composed of N-(α-hydroxyoctadecanoyl)-phytosphingosine (CER [AP]), cholesterol (Ch), FFA and cholesterol sulphate (ChS) was investigated by neutron diffraction. The internal nanostructure of the SC lipid membrane in addition to the water distribution function was determined via calculation of the neutron scattering length density profile (Fourier profile). The Fourier profiles of the studied SC model membranes revealed that such membranes have a repeat distance approximately equal to the membrane thickness. Increasing the chain length of the FFA in the CER[AP] based model membrane did not cause an alteration of the internal nanostructure but led to a decrease in the membrane repeat distance from 45.6 Å (palmitic acid, C16:0) to 43.7 Å (cerotic acid, C26:0) due to a partial interdigitation of the FFA chains. Ceramide [AP] forces the long chain fatty acids to incorporate into the unchanged spacing of the bilayer, thereby obligating the FFA protrude partly through opposing leaflet. Furthermore, the longer chained free fatty acids tend to form a new separate so-called “fatty acid rich phase”. Therefore, the elongation of the chain length of the FFA decreases the solubility of the FFA in the SC model membrane based on CER[AP].

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

Abbreviations

CER [AP]:

N-(α-gydroxyoctadecanoyl)-phytosphingosine

Ch:

Cholesterol

ChS:

Cholesterol sulphate

FFA:

Free fatty acid

FWHH:

Full width at half height

HH:

Hydrophilic–hydrophobic

SA:

Stearic acid

BA:

Behenic acid

TA:

Tetracosanoic acid

CA:

Cerotic acid

RH:

Relative humidity

SC:

Stratum corneum

TEWL:

Transepidermal water loss

References

  • Bonte F, Saunois A, Pinguet P, Meybeck A (1997) Existence of a lipid gradient in the upper stratum corneum and its possible biological significance. Arch Dermatol Res 289:78–82

    Article  Google Scholar 

  • Bouwstra JA, Gooris GS, van der Spek JA, Bras W (1991) Structural investigations of human stratum corneum by small-angle X-ray scattering. J Invest Dermatol 97:1005–1012

    Article  Google Scholar 

  • Bouwstra JA, Gooris GS, van der Spek JA, Lavrijsen S, Bras W (1994) The lipid and protein structure of mouse stratum corneum: a wide and small angle diffraction study. Biochim Biophys Acta 1212:183–192

    Google Scholar 

  • Bouwstra JA, Gooris GS, Bras W, Downing DT (1995) Lipid organization in pig stratum corneum. J Lipid Res 36:685–695

    Google Scholar 

  • Bouwstra JA, Gooris GS, Cheng K, Weerheim A, Bras W, Ponec M (1996) Phase behavior of isolated skin lipids. J Lipid Res 37:999–1011

    Google Scholar 

  • Bouwstra JA, Thewalt J, Gooris GS, Kitson N (1997) A model membrane approach to the epidermal permeability barrier: an X-ray diffraction study. Biochemistry 36:7717–7725

    Article  Google Scholar 

  • Bouwstra JA, Gooris GS, Dubbelaar FE, Weerheim AM, Ijzerman AP, Ponec M (1998) Role of ceramide 1 in the molecular organization of the stratum corneum lipids. J Lipid Res 39:186–196

    Google Scholar 

  • Bouwstra JA, Dubbelaar FE, Gooris GS, Weerheim AM, Ponec M (1999) The role of ceramide composition in the lipid organisation of the skin barrier. Biochim Biophys Acta 1419:127–136

    Article  Google Scholar 

  • Bouwstra JA, Gooris GS, Dubbelaar FE, Ponec M (2001) Phase behavior of lipid mixtures based on human ceramides: coexistence of crystalline and liquid phases. J Lipid Res 42:1759–1770

    Google Scholar 

  • Charalambopoulou GC, Karamertzanis P, Kikkinides ES, Stubos AK, Kanellopoulos NK, Papaioannou AT (2000) A study on structural and diffusion properties of porcine stratum corneum based on very small angle neutron scattering data. Pharm Res 17:1085–1091

    Article  Google Scholar 

  • Elias PM (1981) Lipids and the epidermal permeability barrier. Arch Dermatol Res 270:95–117

    Article  Google Scholar 

  • Elias PM, Friend DS (1975) The permeability barrier in mammalian epidermis. J Cell Biol 65:180–191

    Article  Google Scholar 

  • Elias PM, Goerke J, Friend DS (1977) Mammalian epidermal barrier layer lipids: composition and influence on structure. J Invest Dermatol 69:535–546

    Article  Google Scholar 

  • Feingold KR, Man MQ, Menon GK, Cho SS, Brown BE, Elias PM (1990) Cholesterol synthesis is required for cutaneous barrier function in mice. J Clin Invest 86:1738–1745

    Article  Google Scholar 

  • Franks NP, Lieb WR (1979) The structure of lipid bilayers and the effects of general anaesthetics. An X-ray and neutron diffraction study. J Mol Biol 133:469–500

    Article  Google Scholar 

  • Friberg SE, Osborne DW (1987) Interaction of a model epidermal lipid with a vegetable oil adduct. J Dispers Sci Technol 8:249–258

    Article  Google Scholar 

  • Friberg SE, Kayali I, Beckerman W, Rhein LD, Simion A (1990) Water permeation of reaggregated stratum corneum with model lipids. J Invest Dermatol 94:377–380

    Article  Google Scholar 

  • Fritsch WC, Stoughton RB (1963) The effect of temperature and humidity on the penetration of C14 acetylsalicylic acid in excised human skin. J Invest Dermatol 41:307–311

    Article  Google Scholar 

  • Gordeliy VI, Kiselev MA (1995) Definition of lipid membrane structural parameters from neutronographic experiments with the help of the strip function model. Biophys J 69:1424–1428

    Google Scholar 

  • Grubauer G, Feingold KR, Elias PM (1987) Relationship of epidermal lipogenesis to cutaneous barrier function. J Lipid Res 28:746–752

    Google Scholar 

  • Hatfield RM, Fung LW (1995) Molecular properties of a stratum corneum model lipid system: large unilamellar vesicles. Biophys J 68:196–207

    Google Scholar 

  • Hauss T, Dante S, Dencher NA, Haines TH (2002) Squalane is in the midplane of the lipid bilayer: implications for its function as a proton permeability barrier. Biochim Biophys Acta 1556:149–154

    Article  Google Scholar 

  • Holleran WM, Man MQ, Gao WN, Menon GK, Elias PM, Feingold KR (1991) Sphingolipids are required for mammalian epidermal barrier function. Inhibition of sphingolipid synthesis delays barrier recovery after acute perturbation. J Clin Invest 88:1338–1345

    Article  Google Scholar 

  • Huang C, Mason JT (1986) Structure and properties of mixed-chain phospholipid assemblies. Biochim Biophys Acta 864:423–470

    Google Scholar 

  • Idson B (1975) Percutaneous absorption. J Pharm Sci 64:901–924

    Article  Google Scholar 

  • Keough KM, Davis PJ (1979) Gel to liquid-crystalline phase transitions in water dispersions of saturated mixed-acid phosphatidylcholines. Biochemistry 18:1453–1459

    Article  Google Scholar 

  • Kiselev MA, Ryabova NY, Balagurov AM, Dante S, Hauss T, Zbytovska J, Wartewig S, Neubert RH (2005) New insights into the structure and hydration of a stratum corneum lipid model membrane by neutron diffraction. Eur Biophys J 34:1030–1040

    Article  Google Scholar 

  • Kiselev MA, Ryabova NY, Balagurov AM, Otto D, Dante S, Hauss T, Wartewig S, Neubert RHH (2006) Ceramide 6 influence on the structure and hydration of multilamellar dipalmitoylphosphatidylcholine membrane. Poverchnost X-ray Synchrotron Neutron Invest 6:30–37

    Google Scholar 

  • Kuempel D, Swartzendruber DC, Squier CA, Wertz PW (1998) In vitro reconstitution of stratum corneum lipid lamellae. Biochim Biophys Acta 1372:135–140

    Article  Google Scholar 

  • Lampe MA, Burlingame AL, Whitney J, Williams ML, Brown BE, Roitman E, Elias PM (1983a) Human stratum corneum lipids: characterization and regional variations. J Lipid Res 24:120–130

    Google Scholar 

  • Lampe MA, Williams ML, Elias PM (1983b) Human epidermal lipids: characterization and modulations during differentiation. J Lipid Res 24:131–140

    Google Scholar 

  • Mao-Qiang M, Elias PM, Feingold KR (1993) Fatty acids are required for epidermal permeability barrier function. J Clin Invest 92:791–798

    Article  Google Scholar 

  • McIntosh TJ (2003) Organization of skin stratum corneum extracellular lamellae: diffraction evidence for asymmetric distribution of cholesterol. Biophys J 85:1675–1681

    Google Scholar 

  • McIntosh TJ, Stewart ME, Downing DT (1996) X-ray diffraction analysis of isolated skin lipids: reconstitution of intercellular lipid domains. Biochemistry 35:3649–3653

    Article  Google Scholar 

  • Menon GK, Feingold KR, Moser AH, Brown BE, Elias PM (1985) De novo sterologenesis in the skin. II. Regulation by cutaneous barrier requirements. J Lipid Res 26:418–427

    Google Scholar 

  • Nagle JF, Tristram-Nagle S (2000) Structure of lipid bilayers. Biochim Biophys Acta 1469:159–195

    Google Scholar 

  • Norlen L, Nicander I, Lundsjo A, Cronholm T, Forslind B (1998) A new HPLC-based method for the quantitative analysis of inner stratum corneum lipids with special reference to the free fatty acid fraction. Arch Dermatol Res 290:516

    Google Scholar 

  • Pilgram GS, Engelsma-van Pelt AM, Oostergetel GT, Koerten HK, Bouwstra JA (1998) Study on the lipid organization of stratum corneum lipid models by (cryo-) electron diffraction. J Lipid Res 39:1669–1676

    Google Scholar 

  • Ponec M, Boelsma E, Weerheim A, Mulder A, Bouwstra J, Mommaas M (2000) Lipid and ultrastructural characterization of reconstructed skin models. Int J Pharm 203:211–25

    Article  Google Scholar 

  • Scheuplein RJ (1978) Permeability of the skin: a review of major concepts. Curr Probl Dermatol 7:172–186

    Google Scholar 

  • Schurer NY, Plewig G, Elias PM (1991) Stratum–corneum lipid function. Dermatologica 183:77–94

    Article  Google Scholar 

  • Seul M, Sammon MJ (1990) Competing interactions and domain-shape instabilities in a monomolecular film at an air–water interface. Phys Rev Lett 64:1903–1906

    Article  ADS  Google Scholar 

  • Sweeney TM, Downing DT (1970) The role of lipids in the epidermal barrier to water diffusion. J Invest Dermatol 55:135–140

    Article  Google Scholar 

  • Weerheim A, Ponec M (2001) Determination of stratum corneum lipid profile by tape stripping in combination with high-performance thin-layer chromatography. Arch Dermatol Res 293:199

    Article  Google Scholar 

  • Wertz PW (2000) Lipids and barrier function of the skin. Acta Derm Venereol Suppl (Stockh) 208:7–11

    Article  Google Scholar 

  • Wertz PW, Abraham W, Landmann L, Downing DT (1986) Preparation of liposomes from stratum corneum lipids. J Invest Dermatol 87:582–584

    Article  Google Scholar 

  • Wertz PW, van den Bergh B (1998) The physical, chemical and functional properties of lipids in the skin and other biological barriers. Chem Phys Lipids 91:85–96

    Article  Google Scholar 

  • White SH, Mirejovsky D, King GI (1988) Structure of lamellar lipid domains and corneocyte envelopes of murine stratum corneum. An X-ray diffraction study Biochemistry 27:3725–3732

    Article  Google Scholar 

  • Wiener MC, White SH (1991) Fluid bilayer structure determination by the combined use of X-ray and neutron-diffraction.1. Fluid bilayer models and the limits of resolution. Biophys J 59:162–173

    Article  Google Scholar 

  • Worcester DL (1976) Neutron diffraction studies of biological membranes and membrane components. Brookhaven Symp Biol, pp III37–III57

  • Zimmerer RE, Lawson KD, Calvert CJ (1986) The effects of wearing diapers on skin. Pediatr Dermatol 3:95–101

    Article  Google Scholar 

Download references

Acknowledgments

We would like to thank the members of the group of Prof. Merzweiler for providing the Stoe Stadi MP Powder diffraction system. The work was supported by the Federal State of Saxony-Anhalt, project “Neutron scattering in Biological Systems” (3482A/1102M). Financial assistance from the Hahn-Meitner-Institute (Berlin, Germany) is also gratefully acknowledged. The authors would like to thank Cosmoferm (Delft, The Netherlands) for the donation of CER [AP].

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. H. H. Neubert.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ruettinger, A., Kiselev, M.A., Hauss, T. et al. Fatty acid interdigitation in stratum corneum model membranes: a neutron diffraction study. Eur Biophys J 37, 759–771 (2008). https://doi.org/10.1007/s00249-008-0258-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00249-008-0258-3

Keywords

Navigation