Skip to main content
Log in

Homology modeling of tubulin: influence predictions for microtubule’s biophysical properties

  • Article
  • Published:
European Biophysics Journal Aims and scope Submit manuscript

Abstract

Using comparative modeling, we have generated structural models of 475 α and β tubulins. Using these models, we observed a global, structural similarity between the tubulin isotypes. However, a number of subtle differences in the isotypes physical properties, including net electric charges, solvent accessible surface areas, and electric dipole moments were also apparent. In order to examine the roles that these properties may play in microtubule (MT) assembly and stability, we have created a model to evaluate the dipole–dipole interaction energies of varying MT lattice conformations, using human tubulin isotypes as particularly important examples. We conclude that the dipole moments of each tubulin isotype may influence their functional characteristics within the cell, resulting in differences for MT assembly kinetics and stability.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Aldaz H et al (2005) Insights into microtubule nucleation from the crystal structure of human gamma-tubulin. Nature 435:523–527

    Article  ADS  Google Scholar 

  • Baker N et al (2001) Electrostatics of nanosystems: application to microtubules and the ribosome. Proc Natl Acad Sci USA 98:10037–10041

    Article  ADS  Google Scholar 

  • Berman HM et al (2000) The protein data bank. Nucleic Acids Res 28:235–242

    Article  ADS  Google Scholar 

  • Boeckmann B et al (2003) The SWISS-PROT protein knowledgebase and its supplement TrEMBL in 2003. Nucleic Acids Res 31:365–370

    Article  Google Scholar 

  • Chothia C, Lesk A (1986) The relation between the divergence of sequence and structure in proteins. EMBO J 5:823–826

    Google Scholar 

  • Connolly M (1983) Solvent-accessible surfaces of proteins and nucleic acids. Science 221:709–713

    Article  ADS  Google Scholar 

  • Gigant B et al (2000) The 4 A X-ray structure of a tubulin:stathmin-like domain complex. Cell 102:809–816

    Article  Google Scholar 

  • Gigant B et al (2005) Structural basis for the regulation of tubulin by vinblastine. Nature 435:519–522

    Article  ADS  Google Scholar 

  • Higgins D, Sharp P (1988) CLUSTAL: a package for performing multiple sequence alignment on a microcomputer. Gene 73:237–244

    Article  Google Scholar 

  • Hooft RW et al (1996) Errors in protein structures. Nature 381:272

    Article  ADS  Google Scholar 

  • Hoogland C et al (2004) SWISS-2DPAGE, ten years later. Proteomics 4:2352–2356

    Article  Google Scholar 

  • Horio T, Hotani H (1986) Visualization of the dynamic instability of individual microtubules by dark-field microscopy. Nature 321:605–607

    Article  ADS  Google Scholar 

  • Hyams JS, Stebbings H (1979) The mechanism of microtubule associated cytoplasmic transport. Isolation and preliminary characterisation of a microtubule transport system. Cell Tissue Res 196:103–116

    Article  Google Scholar 

  • Inclan Y, Nogales E (2001) Structural models for the self-assembly and microtubule interactions of gamma-, delta- and epsilon-tubulin. J Cell Sci 114:413–422

    Google Scholar 

  • Jordan M, Wilson L (2004) Mary Ann Jordan, Leslie Wilson. Nat Rev Cancer 4:253–265

    Article  Google Scholar 

  • Kikkawa M et al (2001) Switch-based mechanism of kinesin motors. Nature 411:439–445

    Article  ADS  Google Scholar 

  • Kirschner M, Schulze E (1986) Morphogenesis and the control of microtubule dynamics in cells. J Cell Sci Suppl 5:293–310

    Google Scholar 

  • Laskowski RA et al (1993) PROCHECK: a program to check the stereochemical quality of protein structures. J Appl Crystallogr 26:283–291

    Article  Google Scholar 

  • Li H et al (2002) Microtubule structure at 8 A resolution. Structure (Camb) 10:1317–1328

    Article  Google Scholar 

  • Lindahl E, Hess B, Van Der Spoel D (2001) GROMACS 3.0: a package for molecular simulation and trajectory analysis. J Mol Mod 7:306–317

    Google Scholar 

  • Lowe J et al (2001) Refined structure of alpha beta-tubulin at 3.5 A resolution. J Mol Biol 313:1045–1057

    Article  Google Scholar 

  • Lu Q, Luduena R (1994) In vitro analysis of microtubule assembly of isotypically pure tubulin dimers. Intrinsic differences in the assembly properties of alpha beta II, alpha beta III, and alpha beta IV tubulin dimers in the absence of microtubule-associated proteins. J Biol Chem 269:2041–2047

    Google Scholar 

  • Luduena R (1998) Multiple forms of tubulin: different gene products and covalent modifications. Int Rev Cytol 178:207–275

    Article  Google Scholar 

  • Mandelkow E, Mandelkow E (1992) Microtubule oscillations. Cell Motil Cytoskeleton 22:235–244

    Article  Google Scholar 

  • Margolis R, Wilson L (1981) Microtubule treadmills—possible molecular machinery. Nature 293:705–711

    Article  ADS  Google Scholar 

  • Melki R et al (1989) Cold depolymerization of microtubules to double rings: geometric stabilization of assemblies. Biochemistry 28:9143–9152

    Article  Google Scholar 

  • Minoura I, Muto E (2006) Dielectric measurements of individual microtubles using the electroorientation method. Biophys J 90:3739–3748

    Article  Google Scholar 

  • Mitchison T, Kirschner M (1984) Dynamic instability of microtubule growth. Nature 312:237–242

    Article  ADS  Google Scholar 

  • Nettles J et al (2004) The binding mode of epothilone A on alpha, beta-tubulin by electron crystallography. Science 305:866–869

    Article  ADS  Google Scholar 

  • Nogales E, Wolf S, Downing K (1998) Structure of the alpha beta tubulin dimer by electron crystallography. Nature 391:199–203

    Article  ADS  Google Scholar 

  • Oakley B et al (1990) Gamma-tubulin is a component of the spindle pole body that is essential for microtubule function in Aspergillus nidulans. Cell 61:1289–1301

    Article  Google Scholar 

  • Panda D et al (1994) Microtubule dynamics in vitro are regulated by the tubulin isotype composition. Proc Natl Acad Sci USA 91:11358–11362

    Article  ADS  Google Scholar 

  • Pichichero M, Avers C (1973) The evolution of cellular movement in eukaryotes: the role of microfilaments and microtubules. Subcell Biochem 2:97–105

    Article  Google Scholar 

  • Ravelli R et al (2004) Insight into tubulin regulation from a complex with colchicine and a stathmin-like domain. Nature 428:198–202

    Article  ADS  Google Scholar 

  • Roach MC et al (1998) Preparation of a monoclonal antibody specific for the class I isotype of beta-tubulin: the beta isotypes of tubulin differ in their cellular distributions within human tissues. Cell Motil Cytoskeleton 39:273–285

    Article  Google Scholar 

  • Sanchez R, Sali A (2000) Comparative protein structure modeling. Introduction and practical examples with modeller. Methods Mol Biol 143:97–129

    Google Scholar 

  • Schlieper D et al (2005) Structure of bacterial tubulin BtubA/B: evidence for horizontal gene transfer. Proc Natl Acad Sci USA 102:9170–9175

    Article  ADS  Google Scholar 

  • Schoutens JE (2005) Dipole‚ dipole interactions in microtubules. J Biol Phys 31:35–55

    Article  Google Scholar 

  • Schuessler HA et al (2003) Surface plasmon resonance study of the actin-myosin sarcomeric complex and tubulin dimers. J Mod Optics 50:2381–2391

    ADS  Google Scholar 

  • Sept D, Baker NA, Mccammon J (2003) The physical basis of microtubule structure and stability. Protein Sci 12:2257–2261

    Article  Google Scholar 

  • Stracke R et al (2002) Analysis of the migration behaviour of single microtubules in electric fields. Biochem Biophys Res Commun 293:602–609

    Article  Google Scholar 

  • van Gunsteren WF (1996) Biomolecular simulation: the GROMOS96 manual and user guide. Hochschulverlag AG an der ETH Zurich, Zurich

  • Walker R, Pryer NK, Salmon E (1991) Dilution of individual microtubules observed in real time in vitro: evidence that cap size is small and independent of elongation rate. J Cell Biol 114:73–81

    Article  Google Scholar 

  • Westermann S et al (2006) The Dam1 kinetochore ring complex moves processively on depolymerizing microtubule ends. Nature 440:565–569

    Article  ADS  Google Scholar 

Download references

Acknowledgments

This work has been supported by grants from NSERC (Canada), MITACS and grants to R. F. L. from the Welch Foundation (AQ-0726), US Department of Defense BCRP (W81XWH-05-1-0238) and the PCRP (W81XWH-04-1-0231). This work was also supported through a grant from the Canadian Prostate Cancer Research Initiative (016501). Additional support has come from grant P30-CA54174 from the National Institutes of Health to the San Antonio Cancer Institute. Financial support for this project from Technology Innovations, LLC of Rochester, NY, is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jack A. Tuszynski.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Carpenter, E.J., Huzil, J.T., Ludueña, R.F. et al. Homology modeling of tubulin: influence predictions for microtubule’s biophysical properties. Eur Biophys J 36, 35–43 (2006). https://doi.org/10.1007/s00249-006-0088-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00249-006-0088-0

Keywords

Navigation