Skip to main content
Log in

A target function for quaternary structural refinement from small angle scattering and NMR orientational restraints

  • Article
  • Published:
European Biophysics Journal Aims and scope Submit manuscript

Abstract

We present a novel target function based on atomic coordinates that permits quaternary structural refinement of multi-domain protein–protein or protein–RNA complexes. It requires that the high-resolution structures of the individual domains are known and that small angle scattering (SAS) data as well as NMR orientational restraints from residual dipolar couplings (RDCs) of the complex are available. We show that, when used in combination, the translational and rotational restraints contained in SAS intensities and RDCs, respectively, define a target potential function that permits to determine the overall topology of complexes made up of domains with low internal symmetry. We apply the target function on a modestly anisotropic model system, the Barnase/Barstar complex, and discuss factors that influence the structural refinement such as data errors and the geometrical properties of the individual domains.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Abbreviations

CNS:

Crystallography and NMR system

NMR:

Nuclear magnetic resonance

NOE:

Nuclear Overhauser effect

PDB:

Protein data bank

RDCs:

Residual dipolar couplings

RNA:

Ribonucleic acid

SANS:

Small angle neutron scattering

SAS:

Small angle scattering

References

  • Arfken GB, Weber HJ (1995) Mathematical methods for physicists, 4th edn. Academic, San Diego

    Google Scholar 

  • Battiste JL, Wagner G (2000) Utilization of site-directed spin labeling and high-resolution heteronuclear nuclear magnetic resonance for global fold determination of large proteins with limited nuclear overhauser effect data. Biochemistry 39:5355–5365

    Article  PubMed  Google Scholar 

  • Baumeister W, Steven AC (2000) Macromolecular electron microscopy in the era of structural genomics. Trends Biochem Sci 25(12):624–631

    Article  PubMed  Google Scholar 

  • Bax A (2003) Weak alignment offers new NMR opportunities to study protein structure and dynamics. Protein Sci 12(1):1–16

    Article  PubMed  Google Scholar 

  • Brünger AT, Adams PD, Clore GM, DeLano WL, Gros P, Grosse-Kunstleve RW, Jiang JS, Kuszewski J, Nilges M, Pannu NS, Read RJ, Rice LM, Simonson T, Warren GL (1998) Crystallography & NMR system: a new software suite for macromolecular structure determination. Acta Crystallogr D Biol Crystallogr 54(Pt 5):905–921

    Article  PubMed  Google Scholar 

  • Brüschweiler R (2003) New approaches to the dynamic interpretation and prediction of NMR relaxation data from proteins. Curr Opin Struct Biol 13(2):175–183

    Article  PubMed  Google Scholar 

  • Chou JJ, Li S, Bax A (2000) Study of conformational rearrangement and refinement of structural homology models by the use of heteronuclear dipolar couplings. J Biomol NMR 18:217–227

    Article  PubMed  Google Scholar 

  • Chou JJ, Li S, Klee CB, Bax A (2001) Solution structure of Ca(2+)-calmodulin reveals flexible hand-like properties of its domains. Nat Struct Biol 8:990–997

    Article  PubMed  Google Scholar 

  • Clore GM (2000) Accurate and rapid docking of protein–protein complexes on the basis of intermolecular nuclear overhauser enhancement data and dipolar couplings by rigid body minimization. Proc Natl Acad Sci USA 97:9021–9025

    Article  PubMed  ADS  Google Scholar 

  • Clore GM, Schwieters CD (2003) Docking of protein–protein complexes on the basis of highly ambiguous intermolecular distance restraints derived from 1H/15N chemical shift mapping and backbone 15N–1H residual dipolar couplings using conjoined rigid body/torsion angle dynamics. J Am Chem Soc 125:2902–2912

    Article  PubMed  Google Scholar 

  • Debye P (1915) Zerstreuung von Röntgenstrahlen. Ann Phys (Leipzig) 28:809–823

    Google Scholar 

  • Dobrodumov A, Gronenborn AM (2003) Filtering and selection of structural models: combining docking and NMR. Proteins 53:18–32

    Article  PubMed  Google Scholar 

  • Dominguez C, Boelens R, Bonvin AM (2003) HADDOCK: a protein–protein docking approach based on biochemical or biophysical information. J Am Chem Soc 125:1731–1737

    Article  PubMed  Google Scholar 

  • Dosset P, Hus JC, Blackledge M, Marion D (2000) Efficient analysis of macromolecular rotational diffusion from heteronuclear relaxation data. J Biomol NMR 16(1):23–28

    Article  PubMed  Google Scholar 

  • Dosset P, Hus JC, Marion D, Blackledge M (2001) A novel interactive tool for rigid-body modeling of multi-domain macromolecules using residual dipolar couplings. J Biomol NMR 20:223–231

    Article  PubMed  Google Scholar 

  • Feigin LA, Svergun DI (1987) Structure analysis by small-angle X-ray and neutron scattering. Plenum Press, New York, GW Taylor (ed)

  • Gardner KH, Kay LE (1998) The use of 2H, 13C, 15N multidimensional NMR to study the structure and dynamics of proteins. Annu Rev Biophys Biomol Struct 27:357–406

    Article  PubMed  Google Scholar 

  • Gavin AC, Superti-Furga G (2003) Protein complexes and proteome organization from yeast to man. Curr Opin Chem Biol 7:21–27

    Article  PubMed  Google Scholar 

  • Goldstein H (1977) Classical mechanics. Addison-Wesley. Reading, MA

    Google Scholar 

  • Guillet V, Lapthorn A, Hartley RW, Mauguen Y (1993) Recognition between a bacterial ribonuclease, barnase, and its natural inhibitor, barstar. Structure 1(3):165–176

    Article  PubMed  Google Scholar 

  • Guinier A, Fournet G (1955) Small angle scattering of X-rays. Wiley, New York

    Google Scholar 

  • Jain NU, Wyckoff TJ, Raetz CR, Prestegard JH (2004) Rapid analysis of large protein–protein complexes using NMR-derived orientational constraints: the 95 kDa complex of LpxA with acyl carrier protein. J Mol Biol 343:1379–1389

    Article  PubMed  Google Scholar 

  • Koch MH, Vachette P, Svergun DI (2003) Small-angle scattering: a view on the properties, structures and structural changes of biological macromolecules in solution. Q Rev Biophys 36(2):147–227

    Article  PubMed  Google Scholar 

  • Linge JP, Habeck M, Rieping W, Nilges M (2003) ARIA: automated NOE assignment and NMR structure calculation. Bioinformatics 19:315–316

    Article  PubMed  Google Scholar 

  • Lipsitz RS, Tjandra N (2004) Residual dipolar couplings in NMR structure analysis. Annu Rev Biophys Biomol Struct 33:387–413

    Article  PubMed  Google Scholar 

  • Mackereth CD, Simon B, Sattler M (2005) Extending the size of protein–RNA complexes studied by nuclear magnetic resonance spectroscopy. Chembiochem 6:1578–1584

    Article  PubMed  Google Scholar 

  • Mattinen ML, Paakkonen K, Ikonen T, Craven J, Drakenberg T, Serimaa R, Waltho J, Annila A (2002) Quaternary structure built from subunits combining NMR and small-angle X-ray scattering data. Biophys J 83(2):1177–1183

    Article  PubMed  Google Scholar 

  • McCoy MA, Wyss DF (2002) Structures of protein–protein complexes are docked using only NMR restraints from residual dipolar coupling and chemical shift perturbations. J Am Chem Soc 124:2104–2105

    Article  PubMed  Google Scholar 

  • Prestegard JH, al-Hashimi HM, Tolman JR (2000) NMR structures of biomolecules using field oriented media and residual dipolar couplings. Q Rev Biophys 33(4):371–424

    Article  PubMed  Google Scholar 

  • Rossmann MG, Morais MC, Leiman PG, Zhang W (2005) Combining X-ray crystallography and electron microscopy. Structure 13:355–362

    Article  PubMed  Google Scholar 

  • Sali A, Chiu W (2005) Macromolecular assemblies highlighted. Structure 13:339–341

    Article  Google Scholar 

  • Sibille N, Pardi A, Simorre JP, Blackledge M (2001). Refinement of local and long-range structural order in theophylline-binding RNA using (13)C-(1)H residual dipolar couplings and restrained molecular dynamics. J Am Chem Soc 123:12135–12146

    Article  PubMed  Google Scholar 

  • Skrynnikov NR, Goto NK, Yang D, Choy WY, Tolman JR, Mueller GA, Kay LE (2000). Orienting domains in proteins using dipolar couplings measured by liquid-state NMR: differences in solution and crystal forms of maltodextrin binding protein loaded with beta-cyclodextrin. J Mol Biol 295:1265–1273

    Article  PubMed  Google Scholar 

  • Svergun DI, Barberato C, Koch MHJ (1995). CRYSOL—a program to evaluate X-ray solution scattering from biological macromolecules from atomic coordinates. J Appl Cryst 28:768–773

    Article  Google Scholar 

  • Timmins PA, Zaccai G (1988). Low resolution structures of biological complexes studied by neutron scattering. Eur Biophys J 15(5):257–268

    Article  PubMed  Google Scholar 

  • Tjandra N, Omichinski JG, Gronenborn AM, Clore GM, Bax A (1997a). Use of dipolar 1H–15N and 1H–13C couplings in the structure determination of magnetically oriented macromolecules in solution. Nat Struct Biol 4:732–739

    Article  PubMed  Google Scholar 

  • Tjandra N, Garrett DS, Gronenborn AM, Bax A, Clore GM (1997b) Defining long range order in NMR structure determination from the dependence of heteronuclear relaxation times on rotational diffusion anisotropy. Nat Struct Biol 4:443–449

    Article  Google Scholar 

  • Zuiderweg ER (2002). Mapping protein–protein interactions in solution by NMR spectroscopy. Biochemistry 41(1):1–7

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

The authors thank Drs. Dmitri Svergun and Giuseppe Zaccai for critical reading of the manuscript. This work was supported by the European Union (3D repertoire contract LSHG-CT-2005-512028).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Frank Gabel or Michael Sattler.

Appendices

Appendix

Coefficients and partial derivatives of the B- and C-potentials are

$$ \begin{aligned} B(\theta, \phi) =& 4{\left({R_{1} + R_{2}} \right)}^{2} {\left[ \begin{aligned} \ & \sin^{2} \theta {\left({a_{\rm B} \cos ^{2} \phi + b_{\rm B} \sin ^{2} \phi + c_{\rm B} \sin \phi \cos \phi} \right)} + d_{\rm B} \cos ^{2} \theta \\ & + \sin \theta \cos \theta {\left({e_{\rm B} \cos \phi + f_{\rm B} \sin \phi} \right)} \\ \end{aligned} \right]} \\ & + 4{\left({R_{1} + R_{2}} \right)} {\left[ {\sin \theta {\left({g_{\rm B} \cos \phi + h_{\rm B} \sin \phi} \right)} + i_{\rm B} \cos \theta} \right]}, \\ \end{aligned}$$
(26)
$$ \begin{aligned} a_{\rm B} =& {\sum\limits_{i \in K_{1}, j \in K_{2}} {{\left({x^{2}_{i} + x^{2}_{j}} \right)}},}\quad b_{\rm B} = {\sum\limits_{i \in K_{1}, j \in K_{2} } {{\left({y^{2}_{i} + y^{2}_{j}} \right),}}}\quad c_{\rm B} = 2{\sum\limits_{i \in K_{1} , j \in K_{2}} {{\left({x_{i} y_{i} + x_{j} y_{j}} \right),}}} \\ d_{\rm B} =& {\sum\limits_{i \in K_{1}, j \in K_{2}} {{\left({z^{2}_{i} + z^{2}_{j}} \right)}}} ,\quad e_{\rm B} = 2{\sum\limits_{i \in K_{1}, j \in K_{2}} {{\left({x_{i} z_{i} + x_{j} z_{j}} \right),}}}\quad f_{\rm B} = 2{\sum\limits_{i \in K_{1}, j \in K_{2}} {{\left({y_{i} z_{i} + y_{j} z_{j}} \right)}}} ,\\ g_{\rm B} =& {\sum\limits_{i \in K_{1}, j \in K_{2}} {{\left({x^{3}_{i} + y^{2}_{i} x_{i} + z^{2}_{i} x_{i} - x^{3}_{j} - y^{2}_{j} x_{j} - z^{2}_{j} x_{j}} \right)}}} ,\\ h_{\rm B} =& {\sum\limits_{i \in K_{1}, j \in K_{2}} {{\left({x^{2}_{i} y_{i} + y^{3}_{i} + z^{2}_{i} y_{i} - x^{2}_{j} y_{j} - y^{3}_{j} - z^{2}_{j} y_{j}} \right)}}} ,\\ i_{\rm B} =& {\sum\limits_{i \in K_{1}, j \in K_{2} } {{\left({x^{2}_{i} z_{i} + y^{2}_{i} z_{i} + z^{3}_{i} - x^{2}_{j} z_{j} - y^{2}_{j} z_{j} - z^{3}_{j}} \right)}}} ,\\ \end{aligned} $$
(27)
$$ \begin{aligned} \frac{\partial}{{\partial \phi}}B(\theta, \phi) =& 4{\left({R_{1} + R_{2}} \right)}^{2} {\left[ \begin{aligned}\ & \sin ^{2} \theta {\left({- 2a_{\rm B} \cos \phi \sin \phi + 2b_{\rm B} \sin \phi \cos \phi + c_{\rm B} {\left({\cos ^{2} \phi - \sin ^{2} \phi} \right)}} \right)} \\ & + \sin \theta \cos \theta {\left({- e_{\rm B} \sin \phi + f_{\rm B} \cos \phi} \right)} \\ \end{aligned} \right]} \\ &+ 4{\left({R_{1} + R_{2}} \right)} {\left[ {\sin \theta {\left({- g_{\rm B} \sin \phi + h_{\rm B} \cos \phi} \right)}} \right]} ,\\ \frac{\partial}{{\partial \theta}}B(\theta, \phi) =& 4{\left({R_{1} + R_{2}} \right)}^{2} {\left[ \begin{aligned}\ & 2\sin \theta \cos \theta {\left({a_{\rm B} \cos ^{2} \phi + b_{\rm B} \sin ^{2} \phi + c_{\rm B} \sin \phi \cos \phi} \right)} \\ & - 2d_{\rm B} \cos \theta \sin \theta + {\left({\cos ^{2} \theta - \sin ^{2} \theta} \right)}{\left({e_{\rm B} \cos \phi + f_{\rm B} \sin \phi} \right)} \\ \end{aligned} \right]} \\ &+ 4{\left({R_{1} + R_{2}} \right)} {\left[ {\cos \theta {\left({g_{\rm B} \cos \phi + h_{\rm B} \sin \phi} \right)} - i_{\rm B} \sin \theta} \right]}, \\ \end{aligned}$$
(28)
$$ \begin{aligned} & C(\theta, \phi) = 24{\left({R_{1} + R_{2}} \right)}^{4} {\left[ \begin{aligned} \ & \sin ^{2} \theta {\left({a_{\rm C} \cos ^{2} \phi + b_{\rm C} \sin ^{2} \phi + c_{\rm C} \sin \phi \cos \phi} \right)} + d_{\rm C} \cos ^{2} \theta \\ & + \sin \theta \cos \theta {\left({e_{\rm C} \cos \phi + f_{\rm C} \sin \phi} \right)} \\ \end{aligned} \right]} \\ & \quad \quad \quad\,\,+ 24{\left({R_{1} + R_{2}} \right)}^{3} {\left[ {\sin \theta {\left({g_{\rm C} \cos \phi + h_{\rm C} \sin \phi} \right)} + i_{\rm C} \cos \theta} \right]} \\ & \quad \quad \quad \; + 16{\left({R_{1} + R_{2}} \right)}^{3} {\left[ \begin{aligned}\ & \sin ^{3} \theta {\left({j_{\rm C} \cos ^{3} \phi + k_{\rm C} \sin ^{3} \phi + l_{\rm C} \sin \phi \cos ^{2} \phi + m_{\rm C} \sin ^{2} \phi \cos \phi} \right)} \\ & + n_{\rm C} \cos ^{3} \theta + \sin ^{2} \theta \cos \theta {\left({o_{\rm C} \cos ^{2} \phi + p_{\rm C} \sin ^{2} \phi + q_{\rm C} \cos \phi \sin \phi} \right)} \\ & + \sin \theta \cos ^{2} \theta {\left({r_{\rm C} \cos \phi + s_{\rm C} \sin \phi} \right)} \\ \end{aligned} \right]} ,\\ \end{aligned} $$
(29)
$$ \begin{aligned} a_{\rm C} =& a_{\rm B} + {\sum\limits_{i \in K_{1},j \in K_{2}} {{\left({x^{2}_{i} + x^{2}_{j}} \right)}\frac{{r^{2}_{{ij}}}}{{{\left({R_{1} + R_{2}} \right)}^{2}}}},}\quad b_{\rm C} = b_{\rm B} + {\sum\limits_{i \in K_{1}, j \in K_{2}} {{\left({y^{2}_{i} + y^{2}_{j}} \right)}\frac{{r^{2}_{{ij}}}}{{{\left({R_{1} + R_{2}} \right)}^{2}}}}} ,\\ c_{\rm C} =& c_{\rm B} + 2{\sum\limits_{i \in K_{1}, j \in K_{2}} {{\left({x_{i} y_{i} + x_{j} y_{j}} \right)}}}\frac{{r^{2}_{{ij}}}}{{{\left({R_{1} + R_{2}} \right)}^{2}},}\quad d_{\rm C} = d_{\rm B} + {\sum\limits_{i \in K_{1}, j \in K_{2}} {{\left({z^{2}_{i} + z^{2}_{j}} \right)}\frac{{r^{2}_{{ij}}}}{{{\left({R_{1} + R_{2}} \right)}^{2}}}}} ,\\ e_{\rm C} =& e_{\rm B} + {\sum\limits_{i \in K_{1}, j \in K_{2}} {{\left({x_{i} z_{i} + x_{j} z_{j}} \right)}\frac{{r^{2}_{{ij}}}}{{{\left({R_{1} + R_{2}} \right)}^{2}}}},}\quad f_{\rm C} = f_{\rm B} + {\sum\limits_{i \in K_{1}, j \in K_{2}} {{\left({y_{i} z_{i} + y_{j} z_{j}} \right)}\frac{{r^{2}_{{ij}}}}{{{\left({R_{1} + R_{2}} \right)}^{2}}}}} ,\\ g_{\rm C} =& g_{\rm B} + {\sum\limits_{i \in K_{1}, j \in K_{2}} {{\left({x^{3}_{i} + y^{2}_{i} x_{i} + z^{2}_{i} x_{i} - x^{3}_{j} - y^{2}_{j} x_{j} - z^{2}_{j} x_{j}} \right)}}}\frac{1}{2}\frac{{r^{2}_{{ij}}}}{{{\left({R_{1} + R_{2}} \right)}^{2}}} ,\\ h_{\rm C} =& h_{\rm B} + {\sum\limits_{i \in K_{1}, j \in K_{2}} {{\left({x^{2}_{i} y_{i} + y^{3}_{i} + z^{2}_{i} y_{i} - x^{2}_{j} y_{j} - y^{3}_{j} z^{2}_{j} y_{j}} \right)}}}\frac{1}{2}\frac{{r^{2}_{{ij}}}}{{{\left({R_{1} + R_{2}} \right)}^{2}}}, \\ i_{\rm C} =& i_{\rm B} + {\sum\limits_{i \in K_{1}, j \in K_{2}} {{\left({x^{2}_{i} z_{i} + y^{2}_{i} z_{i} + z^{3}_{i} - x^{2}_{j} z_{j} - y^{2}_{j} z_{j} - z^{3}_{j}} \right)}}}\frac{1}{2}\frac{{r^{2}_{{ij}}}}{{{\left({R_{1} + R_{2}} \right)}^{2}}} ,\\ j_{\rm C} =& {\sum\limits_{i \in K_{1}, j \in K_{2}} {{\left({x^{3}_{i} - x^{3}_{j}} \right)}},}\quad k_{\rm C} = {\sum\limits_{ i \in K_{1}, j \in K_{2}} {{\left({y^{3}_{i} - y^{3}_{j}} \right)}},}\quad l_{\rm C} = 3{\sum\limits_{i \in K_{1}, j \in K_{2}} {{\left({x^{2}_{i} y_{i} - x^{2}_{j} y_{j}} \right)}},} \\ m_{\rm C} =& 3{\sum\limits_{i \in K_{1}, j \in K_{2}} {{\left({y^{2}_{i} x_{i}-y^{2}_{j} x_{j}} \right)}}} ,\quad n_{\rm C} = {\sum\limits_{i \in K_{1}, j \in K_{2}} {{\left({z^{3}_{i} - z^{3}_{j}} \right)}},}\quad o_{\rm C} = 3{\sum\limits_{i \in K_{1}, j \in K_{2}} {{\left({x^{2}_{i} z_{i} - x^{2}_{j} z_{j}} \right)}},}\\ p_{\rm C} =& 3{\sum\limits_{i \in K_{1}, j \in K_{2}} {{\left({y^{2}_{i} z_{i} - y^{2}_{j} z_{j}} \right)}}}, \quad q_{\rm C} = 6{\sum\limits_{i \in K_{1}, j \in K_{2}} {{\left({x_{i} y_{i} z_{i} - x_{j} y_{j} z_{j}} \right)}}} , \quad r_{C} = 3{\sum\limits_{i \in K_{1}, j \in K_{2}} {{\left({z^{2}_{i} x_{i} - z^{2}_{j} x_{j}} \right)}},}\\ s_{\rm C} =& 3{\sum\limits_{i \in K_{1}, j \in K_{2}} {{\left({z^{2}_{i} y_{i} - z^{2}_{j} y_{j}} \right)}}}, \\ \end{aligned} $$
(30)
$$ \begin{aligned} \frac{\partial}{{\partial \phi}}C(\theta, \phi) =& 24{\left({R_{1} + R_{2}} \right)}^{4} {\left[ \begin{aligned} \ & \sin ^{2} \theta {\left({- 2a_{\rm C} \cos \phi \sin \phi + 2b_{\rm C} \sin \phi \cos \phi + c_{\rm C} {\left({- \sin ^{2} \phi + \cos ^{2} \phi} \right)}} \right)} \\ & + \sin \theta \cos \theta {\left({- e_{\rm C} \sin \phi + f_{\rm C} \cos \phi} \right)} \\ \end{aligned} \right]} \\ & + 24{\left({R_{1} + R_{2}} \right)}^{3} {\left[ {\sin \theta {\left({- g_{\rm C} \sin \phi + h_{\rm C} \cos \phi} \right)}} \right]} \\ & + 16{\left({R_{1} + R_{2}} \right)}^{3} {\left[ \begin{aligned}\ & \sin ^{3} \theta {\left(\begin{aligned}\ & - 3j_{\rm C} \cos ^{2} \phi \sin \phi + 3k_{\rm C} \sin ^{2} \phi \cos \phi \\ & + l_{\rm C} {\left({\cos ^{3} \phi - 2 \sin ^{2} \phi \cos \phi} \right)} + m_{\rm C} {\left({- \sin ^{3} \phi + 2\sin \phi \cos ^{2} \phi} \right)} \\ \end{aligned} \right)} \\ & + \sin ^{2} \theta \cos \theta {\left(\begin{aligned}\ & - 2o_{\rm C} \cos \phi \sin \phi + 2p_{\rm C} \sin \phi \cos \phi \\ & + q_{\rm C} {\left({- \sin ^{2} \phi + \cos ^{2} \phi} \right)} \\ \end{aligned} \right)} \\ & + \sin \theta \cos ^{2} \theta {\left({- r_{\rm C} \sin \phi + s_{\rm C} \cos \phi} \right)} \\ \end{aligned} \right]} , \\ \frac{\partial}{{\partial \theta}}C(\theta, \phi) =& 24{\left({R_{1} + R_{2}} \right)}^{4} {\left[ \begin{aligned}\ & 2\sin \theta \cos \theta {\left({a_{\rm C} \cos ^{2} \phi + b_{\rm C} \sin ^{2} \phi + c_{\rm C} \sin \phi \cos \phi} \right)} - 2d_{\rm C} \cos \theta \sin \theta \\ & + {\left({- \sin ^{2} \theta + \cos ^{2} \theta} \right)}{\left({e_{\rm C} \cos \phi + f_{\rm C} \sin \phi} \right)} \\ \end{aligned} \right]} \\ &+ 24{\left({R_{1} + R_{2}} \right)}^{3}{\left[ {\cos \theta {\left({g_{\rm C} \cos \phi + h_{\rm C} \sin \phi} \right)} - i_{\rm C} \sin \theta} \right]}\\ & + 16{\left({R_{1} + R_{2}} \right)}^{3} {\left[ \begin{aligned}\ & 3\sin ^{2} \theta \cos \theta {\left({j_{\rm C} \cos ^{3} \phi + k_{\rm C} \sin ^{3} \phi + l_{\rm C} \sin \phi \cos ^{2} \phi + m_{\rm C} \sin ^{2} \phi \cos \phi} \right)} \\ & - 3n_{\rm C} \cos ^{2} \theta \sin \theta \\ & + {\left({\sin ^{3} \theta + 2\sin \theta \cos ^{2} \theta} \right)}{\left({o_{\rm C} \cos ^{2} \phi + p_{\rm C} \sin ^{2} \phi + q_{\rm C} \cos \phi \sin \phi} \right)} \\ & + {\left({\cos ^{3} \theta - 2\sin ^{2} \theta \cos \theta} \right)}{\left({r_{\rm C} \cos \phi + s_{\rm C} \sin \phi} \right)} \\ \end{aligned} \right]}. \\ \end{aligned} $$
(31)

Distribution of initial and refined Barstar positions

See Fig. 9.

Fig. 9
figure 9

Distribution of the initial and of the refined end position coordinates (θ, ϕ ) of the Barstar domain. The initial positions are depicted in black, structures that converged at less than 1,000 refinement steps in green, and structures that had not converged after 1,000 steps are depicted in red

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gabel, F., Simon, B. & Sattler, M. A target function for quaternary structural refinement from small angle scattering and NMR orientational restraints. Eur Biophys J 35, 313–327 (2006). https://doi.org/10.1007/s00249-005-0037-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00249-005-0037-3

Keywords

Navigation