Skip to main content
Log in

Monolayer–multilayer transitions in a lung surfactant model: IR reflection–absorption spectroscopy and atomic force microscopy

  • Article
  • Published:
European Biophysics Journal Aims and scope Submit manuscript

Abstract

A hydrophobic pulmonary surfactant protein, SP-C, has been implicated in surface-associated activities thought to facilitate the work of breathing. Model surfactant films composed of lipids and SP-C display a reversible transition from a monolayer to surface-associated multilayers upon compression and expansion at the air/water (A/W) interface. The molecular-level mechanics of this process are not yet fully understood. The current work uses atomic force microscopy on Langmuir–Blodgett films to verify the formation of multilayers in a dipalmitoylphosphatidylcholine, dipalmitoylphosphatidylglycerol, cholesterol, and SP-C model system. Isotherms of SP-C-containing films are consistent with exclusion and essentially complete respreading during compression and expansion, respectively. Multilayer formation was not detected in the absence of SP-C. Most notable are the results from IR reflection–absorption spectroscopy (IRRAS) conducted at the A/W interface, where the position and intensity of the Amide I band of SP-C reveal that the predominantly helical structure changes its orientation in monolayers versus multilayers. IRRAS measurements indicate that the helix tilt angle changed from approximately 80° in monolayers to a transmembrane orientation in multilayers. The results constitute the first quantitative measure of helix orientation in mixed monolayer/multilamellar domains at the A/W interface and provide insight into the molecular mechanism for SP-C-facilitated respreading of surfactant.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Abbreviations

AFM:

Atomic force microscopy

ATR:

Attenuated total reflectance

A/W:

Air/water

DLigPC:

1,2-Dilignoceroyl phosphatidylcholine

DPPC:

1,2-Dipalmitoylphosphatidylcholine

DPPG:

1,2-Dipalmitoylphosphatidylglycerol

DSPC:

1,2-Distearoylphosphatidylcholine

EDTA:

Ethylenediaminetetraacetate

IRRAS:

IR reflection–absorption spectroscopy

LB:

Langmuir–Blodgett

PC:

Phosphatidylcholine

PG:

Phosphatidylglycerol

πA:

Surface pressure–molecular area

POPG:

1-Palmitoyl-2-oleoyl phosphatidylglycerol

SFM:

Scanning force microscopy

TOF-SIMS:

Time-of-flight secondary ion mass spectrometry

Tris:

Tris(hydroxymethyl)aminomethane

References

  • Bertie JE, Ahmed MK, Eysel HH (1989) Infrared intensities of liquids. 5. Optical and dielectric constants, integrated intensities, and dipole moment derivatives of H2O and D2O at 22°C. J Phys Chem 93:2210–2218

    Google Scholar 

  • Bi X, Flach CR, Perez-Gil J, Plasencia I, Andreu D, Oliveira E, Mendelsohn R (2002) Secondary structure and lipid interactions of the N-terminal segment of pulmonary surfactant SP-C in Langmuir films: IR reflection-absorption spectroscopy and surface pressure studies. Biochemistry 41:8385–8395

    Article  Google Scholar 

  • Bourdos N, Kollmer F, Benninghoven A, Ross M, Siever M, Galla H-J (2000) Analysis of lung surfactant model systems with time-of-flight secondary ion mass spectrometry. Biophys J 79:357–369

    Google Scholar 

  • Brauner JW, Flach CR, Xu Z, Bi X, Lewis RNAH, McElhaney RN, Gericke A, Mendelsohn R (2003) Quantitative functional group orientation in Langmuir films by infrared reflection-absorption spectroscopy: C=O groups on behenic acid methyl ester and sn2−13 C-DSPC. J Phys Chem B 107:7202–7211

    Article  Google Scholar 

  • Diemel RV, Snel MME, van Golde LMG, Putz G, Haagsman HP, Batenburg JJ (2002a) Effects of cholesterol on surface activity and surface topography of spread surfactant films. Biochemistry 41:15007–15016

    Article  Google Scholar 

  • Diemel RV, Snel MME, Waring AJ, Walther FJ, van Golde LMG, Putz G, Haagsman HP, Batenburg JJ (2002b) Multilayer formation upon compression of surfactant monolayers depends on protein concentration as well as lipid composition. J Biol Chem 277:21179–21188

    Article  Google Scholar 

  • Flach CR, Gericke A, Mendelsohn R (1997) Quantitative determination of molecular chain tilt angles in monolayer films at the air/water interface—infrared reflection/absorption spectroscopy of behenic acid methyl ester. J Phys Chem B 101:58–65

    Article  Google Scholar 

  • Flach CR, Xu Z, Bi X, Brauner JW, Mendelsohn R (2001) Improved IRRAS apparatus for studies of aqueous monolayer films: determination of the orientation of each chain in a fatty-acid homologous Ceramide 2. Appl Spectrosc 55:1060–1066

    Article  Google Scholar 

  • Fraser RDB, MacRae TP (1973) Conformation in fibrous proteins and related synthetic polypeptides. Academic, New York

    Google Scholar 

  • Galla H-J, Bourdos N, von Nahmen A, Amrein M, Sieber M (1998) The role of pulmonary surfactant protein C during the breathing cycle. Thin Solid Films 329:632–635

    Article  Google Scholar 

  • Gericke A, Flach CR, Mendelsohn R (1997) Structure and orientation of lung surfactant SP-C and L-a-dipalmitoylphosphatidylcholine in aqueous monolayers. Biophys J 73:492–499

    Google Scholar 

  • Glasser SW, Burhans MS, Korfhagen TR, Na C-L, Sly PD, Ross GF, Ikegami M, Whitsett JA (2001) Altered stability of pulmonary surfactant in SP-C-deficient mice. Proc Natl Acad Sci U S A 98:6366–6371

    Article  Google Scholar 

  • Goerke J, Clements JA (1986) Alveolar surface tension and lung surfactant. In: Mackelm PT, Mead J (eds) Handbook of physiology: the respiratory system III. American Physiology Society, Washington, pp 247–261

    Google Scholar 

  • Johansson J, Szyperski T, Curstedt T, Wuthrich K (1994) The NMR structure of the pulmonary surfactant-associated polypeptide SP-C in an apolar solvent contains a Valyl-rich Alpha-Helix. Biochemistry 33:6015–6023

    Google Scholar 

  • Knebel D, Sieber M, Reichelt R, Galla H-J, Amrein M (2002) Scanning force microscopy at the air-water interface of an air bubble coated with pulmonary surfactant. Biophys J 82:474–480

    Google Scholar 

  • Krol S, Ross M, Sieber M, Künneke S, Galla H-J, Janshoff A (2000) Formation of three-dimensional protein-lipid aggregates in monolayer films induced by surfactant protein B. Biophys J 79:904–918

    CAS  PubMed  Google Scholar 

  • Kudryashova EV, Meinders MBJ, Visser AJWG, van Hoek A, de Jongh HHJ (2003) Structure and dynamics of egg white ovalbumin adsorbed at the air/water interface. Eur Biophys J 32:553–562

    Article  Google Scholar 

  • Kuzmin VL, Michailov AV (1981) Molecular theory of light reflection and applicability limits of the macroscopic approach. Opt Spectrosc (USSR) 51:383–385

    Google Scholar 

  • Kuzmin VL, Romanov VP, Michailov AV (1992) Reflection of light at the boundary of liquid systems and structure of the surface layer: a review. Opt Spectrosc 73:1–26 [translated from Opt Spektrosk (1992) 73, 3–47]

    Google Scholar 

  • Marsh D (1990) CRC Handbook of Lipid Bilayers. CRC Press, Boca Raton

    Google Scholar 

  • Martinez G, Millhauser G (1995) FTIR spectroscopy of alanine-based peptides: assignment of the Amide I’ modes for random coil and helix. J Struct Biol 114:23–27

    Article  Google Scholar 

  • Mendelsohn R, Liang GL, Strauss HL, Snyder RG (1995) IR spectroscopic determination of gel state miscibility in long-chain phosphatidylcholine mixtures. Biophys J 69:1987–1998

    Google Scholar 

  • von Nahmen A, Schenk M, Sieber M, Amrein M (1997) The structure of a model pulmonary surfactant as revealed by scanning force microscopy. Biophys J 72:463–469

    Google Scholar 

  • Pastrana B, Mautone AJ, Mendelsohn R (1991) Fourier transform infrared studies of secondary structure and orientation of pulmonary surfactant SP-C and its effect on the dynamic surface properties of phospholipids. Biochemistry 30:10058–10064

    Google Scholar 

  • Pastrana-Rios B, Flach CR, Brauner JW, Mautone AJ, Mendelsohn R (1994) A direct test of the “squeeze-out” hypothesis of lung surfactant function—external reflection FT-IR at the air/water interface. Biochemistry 33:5121–5127

    Google Scholar 

  • Pérez-Gil J, Keough KMW (1998) Interfacial properties of surfactant proteins. Biochim Biophys Acta 1408:203–217

    Google Scholar 

  • Piknova B, Schram V, Hall SB (2002) Pulmonary surfactant: phase behavior and function. Curr Opin Struct Biol 12:487–494

    Article  Google Scholar 

  • Plasencia I, Cruz A, Casals C, Pérez-Gil J (2001) Superficial disposition of the N-terminal region of the surfactant protein SP-C and the absence of specific SP-B—SP-C interactions in phospholipid bilayers. Biochem J 359:651–659

    Article  Google Scholar 

  • Postle AD, Heeley EL, Wilton DC (2001) A comparison of the molecular species compositions of mammalian lung surfactant phospholipids. Comp Biochem Physiol A Physiol 129:65–73

    Google Scholar 

  • Rothschild KJ, Clark NA (1979) Polarized infrared spectroscopy of oriented purple membrane. Biophys J 25:473–488

    Google Scholar 

  • Schürch S, Green FHY, Bachofen H (1998) Formation and structure of surface films: captive bubble surfactometry. Biochim Biophys Acta 1408:180–202

    Google Scholar 

  • Takamoto DY, Lipp MM, van Nahmen A, Lee KYC, Waring AJ, Zasadzinski JA (2001) Interaction of lung surfactant proteins with anionic phospholipids. Biophys J 81:153–169

    Google Scholar 

  • Vandenbussche G, Clercx A, Curstedt T, Johansson J, Jörnvall H, Ruysschaert JM (1992) Structure and orientation of the surfactant-associated protein C in a lipid bilayer. Eur J Biochem 203:201–209

    Google Scholar 

  • Veldhuizen R, Nag K, Orgeig S, Possmayer F (1998) The role of lipids in pulmonary surfactant. Biochim Biophys Acta 1408:90–108

    Google Scholar 

  • Williams S, Causgrove TP, Gilmanshin R, Fang KS, Callender RH, Woodruff WH, Dyer RB (1996) Fast events in protein folding: helix melting and formation in a small peptide. Biochemistry 35:691–697

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by PHS grant GM 29864 to R.M.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Carol R. Flach.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wang, L., Cai, P., Galla, HJ. et al. Monolayer–multilayer transitions in a lung surfactant model: IR reflection–absorption spectroscopy and atomic force microscopy. Eur Biophys J 34, 243–254 (2005). https://doi.org/10.1007/s00249-004-0446-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00249-004-0446-8

Keywords

Navigation