Skip to main content
Log in

Detection of channel proximity by nanoparticle-assisted delaying of toxin binding; a combined patch-clamp and flow cytometric energy transfer study

  • Article
  • Published:
European Biophysics Journal Aims and scope Submit manuscript

Abstract

Gold nanoparticles of 30 nm diameter bound to cell-surface receptor major histocompatibility complex glycoproteins (MHCI and MHCII), interleukin-2 receptor α subunit (IL-2Rα), very late antigen-4 (VLA-4) integrin, transferrin receptor, and the receptor-type protein tyrosin phosphatase CD45 are shown by the patch-clamp technique to selectively modulate binding characteristics of Pi2 toxin, an efficient blocker of Kv1.3 channels. After correlating the electrophysiological data with those on the underlying receptor clusters obtained by simultaneously conducted flow cytometric energy transfer measurements, the modulation was proved to be sensitive to the density and size of the receptor clusters, and to the locations of the receptors as well. Based on the observation that engagement of MHCII by a monoclonal antibody down-regulates channel current and based on the close nanometer-scale proximity of the MHCI and MHCII glycoproteins, an analogous experiment was carried out when gold nanoparticles bound to MHCI delayed down-regulation of the Kv1.3 current initiated by ligation of MHCII. Localization of Kv1.3 channels in the nanometer-scale vicinity of the MHC-containing lipid rafts is demonstrated for the first time. A method is proposed for detecting receptor–channel or receptor–receptor proximity by observing nanoparticle-induced increase in relaxation times following concentration jumps of ligands binding to channels or to receptors capable of regulating channel currents.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1 A
Fig. 2A–F
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Abbreviations

BSA:

bovine serum albumin

CLSM:

confocal laser scanning microscopy

Fab:

Fab fragment

FCET:

flow cytometric energy transfer

FRET:

fluorescence resonance energy transfer

IL-2Rα:

interleukin-2 receptor α subunit

mAb:

monoclonal antibody

MHCI:

major histocompatibility complex class I

MHCII:

major histocompatibility complex class II

NSOM:

near-field scanning optical microscopy

RAMIG:

rabbit anti-mouse IgG

RD:

reduction-in-dimensionality

TEM:

transmission electron microscopy

TrfR:

transferrin receptor

VLA-4:

very late antigen-4

References

  • Altomonte M, Pucillo C, Maio M (1999) The overlooked “nonclassical” functions of major histocompatibility complex (MHC) class II antigens in immune and nonimmune cells. J Cell Physiol 179:251–256

    Article  CAS  PubMed  Google Scholar 

  • Axelrod D, Wang MD (1994) Reduction-of-dimensionality kinetics at reaction-limited cell surface receptors. Biophys J 66:588–600

    CAS  PubMed  Google Scholar 

  • Bacsó Z, Matkó J, Szöllősi J, Gáspár R Jr, Damjanovich S (1996) Changes in membrane potential of target cells promotes cytotoxic activity of effector T lymphocytes. Immunol Lett 51:175–180

    Article  PubMed  Google Scholar 

  • Bacsó Z, Bene L, Damjanovich L, Damjanovich S (2002) IFN-γ rearranges membrane topography of MHC-I and ICAM-1 in colon carcinoma cells. Biochem Biophys Res Commun 290:635–640

    Article  PubMed  Google Scholar 

  • Barnstable CJ, Bodmer WF, Brown G, Galfré G, Milstein C, Williams AF, Ziegler A (1978) Production of monoclonal antibodies to group A erythrocytes, HLA and other human cell surface anigens – new tools for genetic analysis. Cell 14:9–20

    Article  CAS  PubMed  Google Scholar 

  • Bene L, Balázs M, Matkó J, Möst J, Dierich MP, Szöllősi J, Damjanovich S (1994) Lateral organization of the ICAM-1 molecule at the surface of human lymphoblasts: a possible model for its co-distribution with the IL-2 receptor, class I and class II HLA molecules. Eur J Immunol 24:2115–2123

    CAS  PubMed  Google Scholar 

  • Bene L, Szöllősi J, Balázs M, Mátyus L, Gáspár R Jr, Ameloot M, Dale RE, Damjanovich S (1997) Major histocompatibility class I protein conformation altered by transmembrane potential changes. Cytometry 27:353–357

    Article  CAS  PubMed  Google Scholar 

  • Berg HC, Purcell EM (1977) Physics of chemoreception. Biophys J 20:193–219

    CAS  PubMed  Google Scholar 

  • Bernasconi CF (1976) Relaxation times in single-step systems. In: Relaxation kinetics. Academic Press, New York, pp 11–19

  • Bock J, Szabó I, Gamper N, Adams C, Gulbins E (2003) Ceramide inhibits the potassium channel Kv1.3 by the formation of membrane platforms. Biochem Biophys Res Commun 305:890–897

    Article  CAS  PubMed  Google Scholar 

  • Bowlby MR, Fadool DA, Holmes TC, Levitan IB (1997) Modulation of the Kv1.3 potassium channel by receptor tyrosine kinases. J Gen Physiol 110:601–610

    Article  CAS  PubMed  Google Scholar 

  • Chandy KG, DeCoursey TE, Cahalan MD, McLaughlin C, Gupta S (1984) Voltage-gated potassium channels are required for human T lymphocyte activation. J Exp Med 160:369–385

    Article  CAS  PubMed  Google Scholar 

  • Cheng PC, Dykstra ML, Mitchell RN, Pierce SK (1999) A role for lipid rafts in B cell antigen receptor signaling and antigen targeting. J Exp Med 190:1549–1560

    Article  CAS  PubMed  Google Scholar 

  • Chung I, Schlichter LC (1997) Native Kv1.3 channels are upregulated by protein kinase C. J Membr Biol 156:73–85

    Article  CAS  PubMed  Google Scholar 

  • Damjanovich S, Pieri C (1991) Electro-immunology: membrane potential, ion-channel activities and stimulatory signal transduction in human T lymphocytes from young and elderly. Ann NY Acad Sci 621:29–39

    CAS  PubMed  Google Scholar 

  • Damjanovich S, Pieri C, Trón L (1992a) Ion channel activity and transmembrane signalling in lymphocytes. Ann NY Acad Sci 605:205–210

    Google Scholar 

  • Damjanovich S, Szöllősi J, Trón L (1992b) Transmembrane signalling in T cells. Immunol Today 13:A12–A15

    Article  CAS  PubMed  Google Scholar 

  • Damjanovich S, Matkó J, Mátyus L, Szabó G Jr, Szöllősi J, Pieri JC, Farkas T, Gáspár R Jr (1998) Supramolecular receptor structures in the plasma membrane of lymphocytes revealed by flow cytometric energy transfer, scanning force- and transmission electron-microscopic analyses. Cytometry 33:225–233

    Article  CAS  PubMed  Google Scholar 

  • Damjanovich S, Bene L, Matkó J, Mátyus L, Krasznai Z, Szabó G Jr, Pieri C, Gáspár R Jr, Szöllősi J (1999) Two-dimensional receptor patterns in the plasma membrane of cells. A critical evaluation of their identification, origin and information content. Biophys Chem 82:99–108

    Article  CAS  Google Scholar 

  • De Petris S (1978) Immunoelectron microscopy and immunofluorescence in membrane biology. In: Korn ED (ed) Methods in membrane biology, vol 9. Plenum Press, New York, pp 1–201

  • DiSanto JP (1997) Cytokines: shared receptors, distinct functions. Curr Biol 7:R424–R426

    Article  CAS  PubMed  Google Scholar 

  • Drénou B, Blancheteau V, Burgess DH, Fauchet R, Charron DJ, Mooney NA (1999) A caspase-independent pathway of MHC class II antigen-mediated apoptosis of human B lymphocytes. J Immunol 163:4115–4124

    CAS  PubMed  Google Scholar 

  • Edidin M, Wei T (1982) Lateral diffusion of H-2 antigens on mouse fibroblasts. J Cell Biol 95:458–462

    Article  CAS  PubMed  Google Scholar 

  • Gáspár R Jr, Bene L, Damjanovich S, Muñoz-Garay C, Calderon-Aranda ES, Possani LD (1995). β-Scorpion toxin 2 from Centruroides noxius blocks voltage-gated K channels in human lymphocytes. Biochem Biophys Res Commun 213:419–423

    Article  PubMed  Google Scholar 

  • Giurisato E, McIntosh DP, Tassi M, Gamberucci A, Benedetti A (2003) T cell receptor can be recruited to a subset of plasma membrane rafts, independently of cell signaling and attendantly to raft clustering. J Biol Chem 278:6771–6778

    Article  CAS  PubMed  Google Scholar 

  • Goldstein SAN, Miller C (1993) Mechanism of charybdotoxin block of a voltage-gated K+ channel. Biophys J 65:1613–1619

    CAS  PubMed  Google Scholar 

  • Hajdú P, Varga Z, Pieri C, Panyi G, Gáspár R Jr (2003) Cholesterol modifies the gating of Kv1.3 in human T lymphocytes. Eur J Physiol 445:674–682

    Google Scholar 

  • Han J, Herzfeld J (1993) Macromolecular diffusion in crowded solutions. Biophys J 65:1155–1161

    CAS  PubMed  Google Scholar 

  • Haugh JM (2002) A unified model for signal transduction reactions in cellular membranes. Biophys J 82:591–604

    CAS  PubMed  Google Scholar 

  • Haugh JM, Lauffenburger DA (1997) Physical modulation of intracellular signaling processes by locational regulation. Biophys J 72:2014–2031

    CAS  PubMed  Google Scholar 

  • Hille B (1992) Ion channels of excitable membranes. Sinauer, Sunderland, Mass., USA

  • Holmes T, Berman CK, Swartz JE, Dagan D, Levitan IB (1997) Expression of voltage-gated potassium channels decreases cellular protein tyrosine phosphorylation. J Neurosci 17:8964–8974

    CAS  PubMed  Google Scholar 

  • Hori T, Uchiyama T, Tsudo M, Umadome H, Ohno H, Fukuhara S, Kita K, Uchino H (1987) Establishment of an interleukin 2-dependent human T cell line from a patient with T cell chronic lymphocytic leukemia who is not infected with human T cell leukemia/lymphoma virus. Blood 70:1069–1073

    CAS  PubMed  Google Scholar 

  • Huby RDJ, Dearman RJ, Kimber I (1999) Intracellular phosphotyrosine induction by major histocompatibility complex class II requires co-aggregation with membrane rafts. J Biol Chem 274:22591–22596

    Article  CAS  PubMed  Google Scholar 

  • Janes PW, Ley SC, Magee AI (1999) Aggregation of lipid rafts accompanies signaling via the T cell antigen receptor. J Cell Biol 147:447–461

    Article  CAS  PubMed  Google Scholar 

  • Jenei A, Varga S, Bene L, Mátyus L, Bodnár A, Bacsó Zs, Pieri C, Gáspár R Jr, Farkas T, Damjanovich S (1997) HLA class I and II antigenes are partially coclustered in the plasma membrane of human lymphoblastoid cells. Proc Natl Acad Sci USA 94:7269–7274

    Article  CAS  PubMed  Google Scholar 

  • Jensen BS, Ødum N, Jørgensen NK, Christophersen P, Olesen S-P (1999) Inhibition of T cell proliferation by selective block of Ca2+-activated K+ channels. Proc Natl Acad Sci USA 96:10917–10921

    Article  CAS  PubMed  Google Scholar 

  • Jürgens L, Nichtl A, Werner U (1999) Electron density imaging of protein films on gold-particle surfaces with transmission electron microscopy. Cytometry 37:87–92

    Article  PubMed  Google Scholar 

  • Khodolenko BN, Hoek JB, Westerhoff HV (2000) Why cytoplasmic signalling proteins should be recruited to cell membranes. Trends Cell Biol 10:173–178

    Article  PubMed  Google Scholar 

  • Kiss E, Balázs Cs, Bene L, Damjanovich S, Matkó J (1997) Effect of TSH and anti-TSH receptor antibodies on the plasma membrane potential of polymorphonuclear granulocytes. Immunol Lett 55:173–177

    Article  CAS  PubMed  Google Scholar 

  • Koo GC, Blake JT, Talento A, Nguyen M, Lin S, Sirotina A, Shah K, Mulvany K, Hora D Jr, Cunningham P, Wunderler DL, McManus OB, Slaughter R, Bugianesi R, Felix J, Garcia M, Williamson J, Kaczorowski G, Sigal NH, Springer MS, Feeney W (1997) Blockade of the voltage-gated potassium channel Kv1.3 inhibits immune responses in vivo. J Immunol 158:5120–5128

    CAS  PubMed  Google Scholar 

  • Lampson LA, Levy R (1980) Two populations of Ia-like molecules on a human B cell line. J Immunol 125:293–299

    CAS  PubMed  Google Scholar 

  • Levite M (2001) Nervous immunity: neurotransmitters, extracellular K+ and T-cell function. Trends Immunol 22:2–5

    Article  CAS  PubMed  Google Scholar 

  • Levite M, Cahalon L, Peretz A, Hershkovicz R, Sobko A, Ariel A, Desai R, Attali B, Lider O (2000) Extracellular K+ and opening of voltage-gated potassium channels activate T cell integrin function: physical and functional association between Kv1.3 channels and β1 integrins. J Exp Med 191:1167–1176

    Article  CAS  PubMed  Google Scholar 

  • Martel J, Dupuis G, Deschênes P, Payet MD (1998) The sensitivity of the human Kv1.3 (hKv1.3) lymphocyte K+ channel to regulation by PKA and PKC is partially lost in HEK 293 host cells. J Membr Biol 161:183–196

    Article  CAS  PubMed  Google Scholar 

  • Martens JR, Navarro-Polanco R, Coppock EA, Nishiyama A, Parshley L, Grobaski TD, Tamkun MM (2000) Differential targeting of Shaker-like potassium channels to lipid rafts. J Biol Chem 275:7443–7446

    Article  CAS  PubMed  Google Scholar 

  • Matkó J, Edidin M (1997) Energy transfer methods for detecting molecular clusters on cell surfaces. Methods Enzymol 278:444–462

    PubMed  Google Scholar 

  • Matkó J, Bodnár A, Vereb G, Bene L, Vámosi G, Szentesi G, Szöllősi J, Hořejší V, Gáspár R Jr, Waldmann TA, Damjanovich S (2002) GPI-microdomains (membrane rafts) and signaling of the multi-chain interleukin-2 receptor in human lymphoma/leukemia T cell lines. Eur J Biochem 269:1199–1208

    Article  PubMed  Google Scholar 

  • Mátyus L (1992) Fluorescence resonance energy transfer measurements on cell surfaces. A spectroscopic tool for determining protein interactions. J Photochem Photobiol B 12:323–337

    Article  PubMed  Google Scholar 

  • Mátyus L, Pieri C, Recchioni R, Moroni F, Bene L, Trón L, Damjanovich S (1990) Voltage gating of Ca2+-activated potassium channels in human lymphocytes. Biochem Biophys Res Commun 171:325–329

    PubMed  Google Scholar 

  • Mátyus L, Bene L, Heiligen H, Rausch J, Damjanovich S (1995) Distinct association of transferrin receptor with HLA class I molecules on HUT-102B and JY cells. Immunol Lett 44:203–208

    Article  PubMed  Google Scholar 

  • Minton XXX (1992) Confinement as a determinant of macromolecular structure and reactivity. Biophys J 63:1090–1100

    CAS  PubMed  Google Scholar 

  • Murphy RM, Slayter H, Schurtenberger P, Chamberlin RA, Colton CK, Yarmush ML (1988) Size and structure of antigen-antibody complexes. Biophys J 54:45–56

    CAS  PubMed  Google Scholar 

  • Nagy P, Mátyus L, Jenei A, Panyi Gy, Varga S, Matkó J, Szöllősi J, Gáspár R Jr, Jovin TM, Damjanovich S (2001) Cell fusion experiments reveal distinctly different association characteristics of cell-surface receptors. J Cell Sci 144:4063–4071

    Google Scholar 

  • Nelson BH, Willerford DM (1998) Biology of the interleukin-2 receptor. Adv Immunol 70:1–81

    CAS  PubMed  Google Scholar 

  • O’Connel KMS, Martens JR, Tamkun MM (2004) Localization of ion channels to lipid raft domains within the cardiovascular system. Trends Cardiovasc Med 14:37–42

    Article  PubMed  Google Scholar 

  • Péter M Jr, Varga Z, Panyi G, Bene L, Damjanovich S, Pieri C, Possani LD, Gáspár R Jr (1998) Pandinus imperator scorpion venom blocks voltage-gated K+ channels in human lymphocytes. Biochem Biophys Res Commun 242:621–625

    Article  PubMed  Google Scholar 

  • Péter M Jr, Hajdu P, Varga Z, Damjanovich S, Possani LD, Panyi G, Gáspár R Jr (2000) Blockage of human T lymphocyte Kv1.3 channels by Pi1, a novel class of scorpion toxin. Biochem Biophys Res Commun 278:34–37

    Article  PubMed  Google Scholar 

  • Péter M Jr, Varga Z, Hajdu P, Gáspár R Jr, Damjanovich S, Horjales E, Possani LD, Panyi G (2001) Effects of toxins Pi2 and Pi3 on human T lymphocyte Kv1.3 channels: the role of Glu7 and Lys24. J Membr Biol 179:13–25

    Article  PubMed  Google Scholar 

  • Phillips RJ (2000) A hydrodynamic model for hindered diffusion of proteins and micelles in hydrogels. Biophys J 79:3350–3354

    CAS  PubMed  Google Scholar 

  • Pieri C, Bacsó Z, Recchioni R, Moroni F, Balázs M, Gáspár R Jr, Damjanovich S (1992) Bretylium differentiates between distinct signal transducing pathways in human lymphocytes. Biochem Biophys Res Commun 190:654–659

    Article  Google Scholar 

  • Schnitzer JE (1988) Analysis of steric partition behavior of molecules in membranes using statistical physics. Application to gel chromatography and electrophoresis. Biophys J 54:1065–1076

    CAS  PubMed  Google Scholar 

  • Schütz GJ, Hesse J, Freudenthaler G, Pastushenko VPh, Knaus H-G, Pragl B, Schindler H (2000a) 3D mapping of individual ion channels on living cells. Single Mol 1:153–157

    Article  Google Scholar 

  • Schütz GJ, Pastushenko VPh, Gruber HJ, Knaus H-G, Pragl B, Schindler H (2000b) 3D imaging of individual ion channels in live cells at 40 nm resolution. Single Mol 1:25–31

    Article  Google Scholar 

  • Simons K, Toomre D (2000) Lipid rafts and signal transduction. Nat Rev Mol Cell Biol 1:31–39

    Article  CAS  PubMed  Google Scholar 

  • Skov S, Klausen P, Claesson MH (1997) Ligation of major histocompatibility complex (MHC) class I molecules on human T cells induces cell death through PI-3 kinase-induced c-Jun NH2-terminal kinase activity: a novel apoptotic pathway distinct from Fas-induced apoptosis. J Cell Biol 139:1523–1531

    Article  CAS  PubMed  Google Scholar 

  • Skov S, Nielsen M, Bregenholt S, Ødum N, Claesson MH (1998) Activation of Stat-3 is involved in the induction of apoptosis after ligation of major histocompatibility complex class I molecules on human Jurkat T cells. Blood 91:3566–3573

    CAS  PubMed  Google Scholar 

  • Spack EG Jr, Packard B, Wier ML, Edidin M (1986) Hydrophobic adsorption chromatography to reduce nonspecific staining by rhodamine-labeled antibodies. Anal Biochem 158:233–237

    CAS  PubMed  Google Scholar 

  • Su MW-C, Yu C-L, Burakoff SJ, Jin Y-J (2001) Targeting Src homology 2 domain-containing tyrosine phosphatase (SHP-1) into lipid rafts inhibits CD3-induced T cell activation. J Immunol 166:3975–3982

    CAS  PubMed  Google Scholar 

  • Szöllősi J, Damjanovich S, Balázs M, Nagy P, Trón L, Fulwyler MJ, Brodsky FM (1989) Physical association between MHC class I and class II molecules detected on the cell surface by flow cytometric energy transfer. J Immunol 143:208–213

    PubMed  Google Scholar 

  • Szöllősi J, Hořejší V, Bene L, Damjanovich S (1996) Supramolecular complexes of MHC class I, MHC class II, CD20 and tetraspan molecules (CD53, CD81, CD82) at the surface of a B cell line JY. J Immunol 157:2939–2946

    PubMed  Google Scholar 

  • Tanabe M, Sekimata M, Ferrone S, Takiguchi M (1992) Structural and functional analysis of monomorphic determinants recognized by monoclonal antibodies reacting with HLA class I alpha 3 domain. J Immunol 148:3202–3209

    CAS  PubMed  Google Scholar 

  • Tokita M, Miyoshi T, Takegoshi K, Hikichi K (1996) Probe diffusion in gels. Phys Rev E 53:1823–1827

    Article  CAS  Google Scholar 

  • Tomadakis MM, Sotirchos SV (1993) Transport properties of random arrays of freely overlapping cylinders with various orientation distributions. J Chem Phys 98:616–626

    Article  CAS  Google Scholar 

  • Tong J, Anderson JL (1996) Partitioning and diffusion of proteins and linear polymers in polyacrylamide gels. Biophys J 70:1505–1513

    CAS  PubMed  Google Scholar 

  • Trón L (1994) Experimental methods to measure fluorescence resonance energy transfer processes. In: Damjanovich S, Szöllősi J, Trón L, Edidin M (eds) Mobility and proximity in biological membranes. CRC, Boca Raton, Fla., USA, pp 1–47

  • Trón L, Szöllősi J, Damjanovich S, Helliwell SH, Arndt-Jovin DJ, Jovin TM (1984) Flow cytometric measurement of fluorescence resonance energy transfer on cell surfaces. Quantitative evaluation of the transfer efficiency on a cell-by-cell basis. Biophys J 45:939–946

    PubMed  Google Scholar 

  • Tsong TY, Astumian RD (1987) Electroconformational coupling and membrane protein function. Prog Biophys Mol Biol 50:1–20

    Article  CAS  PubMed  Google Scholar 

  • Van Der Meer BW, Coker G III, Chen S-YS (1994) Resonance energy transfer, theory and data. VCH, Weinheim, Germany, p 155

  • Vereb G, Matkó J, Vámosi G, Ibrahim SM, Magyar E, Varga S, Szöllősi J, Jenei A, Gáspár R Jr, Waldmann TA, Damjanovich S (2000) Cholesterol-dependent clustering of IL-2Rα and its colocalization with HLA and CD48 on T lymphoma cells suggest their functional association with lipid rafts. Proc Natl Acad Sci USA 97:6013–6018

    Article  CAS  PubMed  Google Scholar 

  • Vereb G, Szöllősi J, Matkó J, Nagy P, Farkas T, Vígh L, Mátyus L, Waldmann TA, Damjanovich S (2003) Dynamic, yet structured: the cell membrane three decades after the Singer-Nicolson model. Proc Natl Acad Sci USA 100:8053–8058

    Article  CAS  PubMed  Google Scholar 

  • Wade WF, Davoust J, Salamero J, André P, Watts TH, Cambier JC (1993) Structural compartmentalization of MHC class II signaling function. Immunol Today 14:539–546

    Article  CAS  PubMed  Google Scholar 

  • Wang D, Gou S-Y, Axelrod D (1992) Reaction rate enhancement by surface diffusion of adsorbates. Biophys Chem 43:117–137

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

This work was financed by grants OTKA T042618 and TS040773 to S.D., grants OTKA T043087 and ETT 222/2003 to R.G., and by grant ETT 138/2001 and a Békésy György postdoctoral fellowship to L.B.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to László Bene.

Appendix

Appendix

Phenomenological interpretation of the η shielding factor

Analogous problems concerning constrained 3D diffusion of particles in a background of retarding obstacles of various sizes and shapes were treated by theorists modeling phenomena in the field of gel electrophoresis and size exclusion chromatography (Schnitzer 1988; Tong and Anderson 1996). In the case of the close proximity of gold islands and channels, the effective local concentration of toxin around the channels can be reduced by two effects: (1) steric exclusion due to the finite size of the gold beads and the covering antibodies (Schnitzer 1988; Minton 1992; Jürgens et al. 1999), and (2) the reduced diffusion rate of toxin in the gold island due to the increased hydrodynamic interaction caused by the volume confinement (Han and Herzfeld 1993; Tomadakis and Sotirchos 1993; Tong and Anderson 1996; Phillips 2000).

The diffusion current of the toxin can be decomposed into two components: one is parallel to the cell surface; the other is perpendicular to it (Fig. 1A). Because the gold islands are mainly laterally extended, i.e. 2D systems, we expect the lateral component of diffusion to be more effectively reduced than the perpendicular one. Moreover, the binding of toxin to the channel is necessarily preceded by a surface diffusion step or reduction-in-dimensionality (RD) enhancement (Berg and Purcell 1977; Wang et al. 1992; Axelrod and Wang 1994), which further emphasizes the significance of the lateral component of the diffusion current. A semi-quantitative interpretation of the η shielding efficiency can be made, based on the work of Axelrod and Wang (1994) discussing the role of RD enhancement for reaction-limited association of ligands with cell-surface receptors. That binding of toxin to the Kv1.3 channels is reaction limited is justified by the small value of the Damköhler number (Da<10−4), calculated by using the values of kon and the diffusion constant of the toxin, as well as the cell radius given in Materials and methods (Haugh and Lauffenburger 1997). Based on the work of Axelrod and Wang (1994), the following formula can be deduced for the RD enhancement factor of the kon association constant:

$$ \frac{{k_{{\text{on}}} }} {{k_{{\text{on}}}^{\left( 0 \right)} }} = \frac{{1 + 16\chi _2 D_2 K_{\text{u}} /\left( {3\pi \chi _3 D_3 a_{{\text{cell}}} } \right)}} {{1 + 16\chi _2 D_2 K_{\text{u}} /\left[ {\left( {3\pi \chi _3 D_3 a_{{\text{cell}}} } \right) + 2\sigma k_{{\text{off}}} /(a_{{\text{cell}}} c)} \right]}} $$
(A1)

where D2 and D3 designate the 2D (on the cell surface) and 3D (off the cell surface) diffusion constants, χ2 and χ3 are the 2D and 3D success probabilities per encounter (orientation factor) leading to binding, Ku is the unspecific equilibrium binding constant of toxin onto the membrane, acell is the cell radius, koff is the dissociation rate constant of the toxin from the channel, σ is the average free path length of the toxin (taken to be equal for 2D and 3D diffusion), c is the toxin concentration, and kon(0) is the association rate constant in the absence of surface diffusion of toxin, i.e. at D2=0. Equation (A1) tells us that surface diffusion can be effective whenever unspecific binding to the surface is strong, i.e. Ku is large (as is the case with the Pi2 toxin, due to its seven positive charges) and when c is small enough. Additionally, Eq. (A1) reports that gold islands may cause a reduction in D2 and χ2 much more than in D3 and χ3, because of the large lateral 2D nature of gold islands, and as a consequence the value of kon should reduce in the presence of gold (using the available data on physical parameters of the Pi2 toxin, the RD enhancement factor is approximately ~10 at the c=2.5 nM concentration; see Materials and methods). If we write the ratio of the 2D diffusion constant close to or in the gold island relative to that in the absence of gold (or at an infinitely long distance from the gold island) as a product of factors H and S, where H accounts for hydrodynamic effects and S for steric exclusion (tortuosity) effects, the resulting expression is (Phillips 2000):

$$ D_2 /D_{2,\infty } = H\left( {\lambda ,\phi } \right)S\left( {\lambda ,\phi } \right) $$
(A2)

where both H and S are exponential functions of the negative power of the λ and φ quantities, where λ is the ratio of the radius of the toxin and that of the gold bead and φ is the volume fraction excluded by the gold beads in the gold island. At small φ volume fractions, expanding the exponentials in a power series, D2/D2,∞ can be approximated by the following formula:

$$ D_{\text{2}} /D_{2,\infty } \approx 1 - F\left( \lambda \right)\phi $$
(A3)

where the F(λ) term is a constant, determined by the toxin size/gold size ratio. If the gold island is modeled by an “equivalent cylinder” of radius R and height h, then the local excluded volume φ can be calculated as follows:

$$ \begin{gathered} \phi {\text{ }} = {\text{volume of beads in the cylinder / volume of cylinder }} \hfill \\ \;\;\;\; = {\text{(}}N \times {\text{4}}r^{\text{3}} \pi /3)/(R^2 \pi h) \hfill \\ \end{gathered} $$
(A4)

where N is the number of gold beads in the island and r is the radius of a gold bead. This expression can be rearranged to the following form, by introducing the interparticle separation d and local surface density ρ=1/d2 of gold beads in the island:

$$ \begin{gathered} \phi = (4/3)(r/h)(r^2 \pi )\rho \hfill \\ \;\;\; = {\text{(4}}\pi {\text{/3)}}(r/h)(r/d)^2 \hfill \\ \end{gathered} $$
(A5)

Although Eq. (A1) contains physical constants which can only be approximated, Eqs. (10), (A1), and (A2) show that there exists a formal relationship between the measurable η value and the local surface density (or inter-particle separation) of the gold beads. We should add that besides hindering diffusion, even direct modification of kon may also occur.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rubovszky, B., Hajdú, P., Krasznai, Z. et al. Detection of channel proximity by nanoparticle-assisted delaying of toxin binding; a combined patch-clamp and flow cytometric energy transfer study. Eur Biophys J 34, 127–143 (2005). https://doi.org/10.1007/s00249-004-0436-x

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00249-004-0436-x

Keywords

Navigation