Skip to main content

Advertisement

Log in

Effect of cholesterol on bilayer location of the class A peptide Ac-18A-NH2 as revealed by fluorescence resonance energy transfer

  • Article
  • Published:
European Biophysics Journal Aims and scope Submit manuscript

Abstract

An amphipathic class A peptide, Ac-18A-NH2, has been employed in modeling the α-helical lipid-binding site of apolipoprotein A-I (apoA-I). To gain insight into the nature of protein–lipid interactions responsible for the ability of apoA-I to promote the efflux of intracellular cholesterol, the peptide disposition in model membranes composed of phosphatidylcholine (PC) and its mixture with cholesterol (Chol) has been characterized. By examining resonance energy transfer between the peptide Trp as a donor and anthrylvinyl-labeled PC as an acceptor it was found that Chol inclusion is conducive to shallower bilayer location of the Ac-18A-NH2 α-helix. The limits for the Trp distance from the membrane center were estimated to be 1.5–1.7 nm (PC) and 1.9–2.1 nm (PC:Chol), indicating that in the PC bilayer the Trp resides at the level of the glycerol backbone and carbonyl groups while the region of the phosphocholine moieties is preferable for Trp location in the PC:Chol bilayer. These findings suggest that Chol can modulate the interactions between apoA-I and membrane lipids via reducing the depth of α-helix bilayer penetration.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.

Similar content being viewed by others

Abbreviations

apoA-I:

apolipoprotein A-I

AV-PC:

anthrylvinyl-labeled phosphatidylcholine

Chol:

cholesterol

HDL:

high-density lipoproteins

LUV:

large unilamellar vesicles

PC:

phosphatidylcholine

RET:

fluorescence resonance energy transfer

References

  • Albinsson B, Kubista M, Norden B, Thulstrup E (1989) Near-ultraviolet electronic transitions of the tryptophan fluorophore: linear dichroism, fluorescence anisotropy, and magnetic circular dichroism spectra of some indole derivatives. J Phys Chem 93:6646–6654

    CAS  Google Scholar 

  • Anantharamaiah G, Jones J, Brouilette C, Schmidt C, Chung B, Hughes T, Brown A, Segrest J (1985) Studies of synthetic peptide analogs of the amphipathic helix: structure of complexes with dimyristoylphosphatidylcholine. J Biol Chem 260:10248–10255

    CAS  PubMed  Google Scholar 

  • Bartlett G (1959) Phosphorus assay in column chromatography. J Biol Chem 234:466–468

    CAS  Google Scholar 

  • Braun P, Heijne G (1999) The aromatic residues Trp and Phe have different effects on the positioning of a transmembrane helix in the microsomal membrane. Biochemistry 38:9778–9782

    Article  CAS  PubMed  Google Scholar 

  • Bulychev AA, Verchoturov VN, Gulaev BA (1988) Current methods of biophysical studies. Vyschayashkola, Moscow.

  • Clayton A, Sawyer W (1999) The structure and orientation of class A amphipathic peptides on a phospholipid bilayer surface. Eur Biophys J 28:133–141

    Google Scholar 

  • Clayton A, Sawyer W (2000a) Site-specific tryptophan dynamics in class A amphipathic helical peptides at a phospholipid bilayer interface. Biophys J 79:1066–1073

    CAS  PubMed  Google Scholar 

  • Clayton A, Sawyer W (2000b) Oriented circular dichroism of a class A amphipathic helix in aligned phospholipid multilayers. Biochim Biophys Acta 1467:124–130

    Article  CAS  PubMed  Google Scholar 

  • Dale R, Eisinger J, Blumberg W (1979) The orientational freedom of molecular probes. The orientation factor in intramolecular energy transfer. Biophys J 26:161–194

    CAS  PubMed  Google Scholar 

  • Davenport L, Dale R, Bisby R, Cundall R (1985) Transverse location of the fluorescent probe 1,6-diphenyl-1,3,5-hexatriene in model lipid bilayer membrane systems by resonance excitation energy transfer. Biochemistry 24: 4097–4108

    CAS  PubMed  Google Scholar 

  • Demel R, de Kruijff B (1976) The function of sterols in membranes. Biochim Biophys Acta 457:109–132

    CAS  PubMed  Google Scholar 

  • De Planque MR, Kruijtzer JA, Liskamp RM, Marsh D, Greathouse DV, Koeppe RE II, de Kruijff B, Killian JA (1999) Different membrane anchoring positions of tryptophan and lysine in synthetic transmembrane α-helical peptides. J Biol Chem 274:20839–20846

    Article  PubMed  Google Scholar 

  • Duzgunes N, Shavnin S (1992) Membrane destabilization by N-terminal peptides of viral envelope proteins. J Membr Biol 128:71–80

    CAS  PubMed  Google Scholar 

  • Egashira M, Gorbenko G, Tanaka M, Saito H, Molotkovsky J, Nakano M, Handa T (2002) Cholesterol modulates interaction between an amphipathic class A peptide, Ac-18A-NH2, and phosphatidylcholine bilayers. Biochemistry 41:4165–4172

    Article  CAS  PubMed  Google Scholar 

  • Epand R, Shai Y, Segrest J, Anantharamaiah G (1995) Mechanisms for the modulation of membrane bilayer properties by amphipathic helical peptides. Biopolymers 37:319–338

    CAS  PubMed  Google Scholar 

  • Fung BK, Stryer L (1978) Surface density determination in membranes by fluorescence energy transfer. Biochemistry 17:5241–5248

    CAS  PubMed  Google Scholar 

  • Ho C, Slater S, Stubbs C (1995) Hydration and order in lipid bilayers. Biochemistry 34:6188–6195

    CAS  PubMed  Google Scholar 

  • Hristova K, Wimley W, Mishra V, Anantharamaiah G, Segrest J, White S (1999) An amphipathic α-helix at a membrane interface: a structural study using a novel X-ray diffraction method. J Mol Biol 290:99–117

    CAS  PubMed  Google Scholar 

  • Ivkov VG, Berestovsky GN (1981) Dynamic structure of lipid bilayers. Nauka, Moscow

  • Johansson L, Molotkovsky J, Bergelson L (1990) Fluorescence properties of anthrylvinyl lipid probes. Chem Phys Lipids 53:185–189

    Article  CAS  Google Scholar 

  • Johnson WJ, Mahlberg FH, Rothblat GH, Phillips MC (1991) Cholesterol transport between cells and high-density lipoproteins. Biochim Biophys Acta 1085:273–298

    Article  CAS  PubMed  Google Scholar 

  • Kirby E, Steiner R (1970) The influence of solvent and temperature upon the fluorescence of indole derivatives. J Phys Chem 74:4480–4490

    CAS  Google Scholar 

  • Lakowicz JR (1999) Principles of fluorescent spectroscopy. Plenum Press, New York

  • Lecompte M, Bras A, Dousset N, Portas I, Salvayre R, Ayrault-Jarrier M (1998) Binding steps of apolipoprotein A-I with phospholipid monolayers: adsorption and penetration. Biochemistry 37:16165–16171

    Article  CAS  PubMed  Google Scholar 

  • Levine Y (1972) Physical studies of membrane structure. Prog Biophys Mol Biol 24:1–74

    Article  CAS  PubMed  Google Scholar 

  • Lu B, Morrow J, Weisgraber K (2000) Conformational reorganization of the four-helix bundle of human apolipoprotein E in binding to phospholipids. J Biol Chem 275:20775–20781

    Article  CAS  PubMed  Google Scholar 

  • Lund-Katz S, Phillips M, Mishra V, Segrest J, Anantharamaiah G (1995) Microenvironments of basic amino acids in amphipathic α-helices bound to phospholipid: 13C NMR studies using selectively labeled peptides. Biochemistry 34:9219–9226

    CAS  PubMed  Google Scholar 

  • Maiorano N, Davidson S (2000) The orientation of helix 4 in apolipoprotein A-I-containing reconstituted high density lipoproteins. J Biol Chem 275:17374–17380

    CAS  PubMed  Google Scholar 

  • McLaughlin A, Cullis P, Hemminga M, Hoult D, Radda G, Ritchie G, Seeley P, Richards R (1975) Application of 31P NMR to model and biological membrane systems. FEBS Lett 57:213–218

    Article  CAS  PubMed  Google Scholar 

  • Mishra V, Palgunachari M (1996) Interaction of model class A1, class A2 and class Y amphipathic helical peptides with membranes. Biochemistry 35:11210–11220

    Article  CAS  PubMed  Google Scholar 

  • Mishra V, Palgunachari M, Segrest J, Anantharamaiah G (1994) Interactions of synthetic peptide analogs of the class A amphipathic helix with lipids. J Biol Chem 26:7185–7191

    Google Scholar 

  • Mishra V, Palgunachari M, Lund-Katz S, Phillips M, Segrest J, Anantharamaiah G (1995) Effect of the arrangement of tandem repeating units of class A amphipathic α-helices on lipid interaction. J Biol Chem 270:1602–1611

    Article  CAS  PubMed  Google Scholar 

  • Mishra V, Palgunachari M, Datta G, Phillips M, Lund-Katz S, Adeyeye S, Segrest J, Anantharamaiah G (1998) Studies of synthetic peptides of human apolipoprotein A-I containing tandem amphipathic α-helices. Biochemistry 37:10313–10324

    Article  CAS  PubMed  Google Scholar 

  • Molotkovsky J, Dmitriev P, Nikulina L, Bergelson L (1979) Synthesis of new fluorescence labeled phosphatidylcholines. Bioorg Khim 5:588–594

    Google Scholar 

  • Molotkovsky J, Dmitriev P, Molotkovskaya I, Bergelson L, Manevich E (1981) Synthesis of new fluorescent phospholipids and a study of their behavior in model membranes. Bioorg Khim 7:586–600

    Google Scholar 

  • Monette M, Van Calsteren M, Lafleur M (1993) Effect of cholesterol on the polymorphism of dipalmitoylphosphatidylcholine/melittin complexes: an NMR study. Biochim Biophys Acta 1149:319–328

    Article  CAS  PubMed  Google Scholar 

  • Nicol F, Nir S, Szoka F (1996) Effect of cholesterol and charge on pore formation in bilayer vesicles by a pH-sensitive peptide. Biophys J 71:3288–3301

    CAS  PubMed  Google Scholar 

  • Oram JF, Yokoyama S (1996) Apolipoprotein-mediated removal of cellular cholesterol and phospholipids. J Lipid Res 37:2473–2491

    CAS  PubMed  Google Scholar 

  • Palgunachari M, Mishra V, Lund-Katz S, Phillips M, Adeyeye S, Alluri S, Anantharamaiah G, Segrest J (1996) Only the two end helices of eight tandem amphipathic helical domains of human apoA-I have significant lipid affinity: implications for HDL assembly. Arteriorscler Thromb Vasc Biol 16:328–338

    CAS  Google Scholar 

  • Persson S, Killian JA, Lindblom G (1998) Molecular ordering of interfacially localized analogs of ester- and ether-lipid bilayers studied by H-NMR. Biophys J 75:1365–1371

    CAS  PubMed  Google Scholar 

  • Polozov I, Polozova A, Tytler E, Anantharamaiah G, Segrest J, Wooley G, Epand R (1997) Role of lipids in the permeabilization of membranes by class L amphipathic helical peptides. Biochemistry 36:9237–9245

    Article  CAS  PubMed  Google Scholar 

  • Pott T, Dufourc E (1995) Action melittin on the DPPC–cholesterol liquid-ordered phase: a solid state 2H- and 31P-NMR study. Biophys J 68:965–977

    CAS  PubMed  Google Scholar 

  • Saito H, Miyako Y, Handa T, Miyajima K (1997) Effect of cholesterol on apolipoprotein A-I binding to lipid bilayers and emulsions. J Lipid Res 38:287–294

    CAS  PubMed  Google Scholar 

  • Segrest J, de Loof H, Dohlman J, Brouilette C, Anantharamaiah G (1990) Amphipathic helix motif: classes and properties. Proteins Struct Funct Genet 8:103–117

    CAS  PubMed  Google Scholar 

  • Slotter JP, Oram JF, Bierman EL (1987) Binding of high density lipoproteins to cell receptors promotes translocation of cholesterol from intracellular membranes to the cell surface. J Biol Chem 262:12904–12907

    PubMed  Google Scholar 

  • Spuhler P, Anantharamaiah G, Segrest J, Seelig J (1994) Binding of apolipoprotein A-I model peptides to lipid bilayers. Measurement of binding isotherms and peptide–lipid headgroup interactions. J Biol Chem 269:23904–23910

    CAS  PubMed  Google Scholar 

  • Straume M, Litman B (1987) Influence of cholesterol on equilibrium and dynamic bilayer structure of unsaturated acyl chain phosphatidylcholine vesicles as determined from higher order analysis of fluorescence anisotropy decay. Biochemistry 26:5121–5126

    CAS  PubMed  Google Scholar 

  • Sviridov D, Pyle L, Fidge N (1996) Identification of a sequence of apolipoprotein A-I associated with the efflux of intracellular cholesterol to human serum and apolipoprotein A-I containing particles. Biochemistry 35:189–196

    Article  CAS  PubMed  Google Scholar 

  • Tytler E, Segrest J, Epand RM, Nie S, Epand RF, Mishra V, Venkatachalapathi Y, Anantharamaiah G (1993) Reciprocal effects of apolipoprotein and lytic peptide analogs on membranes. Cross-sectional molecular shapes of amphipathic alpha helixes control membrane stability. J Biol Chem 268:22112–22118

    CAS  PubMed  Google Scholar 

  • Valeur B, Weber G (1977) Resolution of the fluorescence excitation spectrum of indole into 1La and 1Lb excitation bands. Photochem Photobiol 25:441–444

    CAS  PubMed  Google Scholar 

  • Venkatachalapathi Y, Phillips M, Epand RM, Epand RF, Tytler E, Segrest J, Anantharamaiah G (1993) Effect of end group blockage on the properties of a class A amphipathic helical peptide. Proteins Struct Funct Genet 15:349–359

    CAS  PubMed  Google Scholar 

  • Wiener M, White S (1992) Structure of a fluid dioleoylphosphatidylcholine bilayer determined by joint refinement of X-ray and neutron diffraction data. Biophys J 61:434–447

    CAS  Google Scholar 

  • Wu P, Brand L (1992) Orientation factor in steady state and time-resolved resonance energy transfer measurements. Biochemistry 31:7939–7947

    CAS  PubMed  Google Scholar 

  • Yau W-M, Wimley W, Gawrisch K, White S (1998) The preference of tryptophan for membrane interface. Biochemistry 37:14713–14718

    CAS  PubMed  Google Scholar 

  • Yeagle P, Hutton W, Huang C, Martin R (1977) Phospholipid headgroup conformations: intermolecular interaction and cholesterol effects. Biochemistry 16:4344–4449

    CAS  PubMed  Google Scholar 

  • Yokoyama S (1998) Apolipoprotein-mediated cellular cholesterol efflux. Biochim Biophys Acta 1392:1–15

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported in part by grants from Research Fellowships of the Japan Society for the Promotion of Science (RC 30026103 for G.G. and 12470488 for T.H.)

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Galyna Gorbenko.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gorbenko, G., Handa, T., Saito, H. et al. Effect of cholesterol on bilayer location of the class A peptide Ac-18A-NH2 as revealed by fluorescence resonance energy transfer. Eur Biophys J 32, 703–709 (2003). https://doi.org/10.1007/s00249-003-0333-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00249-003-0333-8

Keywords

Navigation