Skip to main content
Log in

Membrane Effects of N-Terminal Fragment of Apolipoprotein A-I: A Fluorescent Probe Study

  • ORIGINAL PAPER
  • Published:
Journal of Fluorescence Aims and scope Submit manuscript

Abstract

The binding of monomeric and aggregated variants of 1–83 N-terminal fragment of apolipoprotein A-I with substitution mutations G26R, G26R/W@8, G26R/W@50 and G26R/W@72 to the model lipid membranes composed of phosphatidylcholine and its mixture with cholesterol has been investigated using fluorescent probes pyrene and Laurdan. Examination of pyrene spectral behavior did not reveal any marked influence of apoA-I mutants on the hydrocarbon region of lipid bilayer. In contrast, probing the membrane effects by Laurdan revealed decrease in the probe generalized polarization in the presence of aggregated proteins. suggesting that oligomeric and fibrillar apoA-I species induce increase in hydration degree and reduction of lipid packing density in the membrane interfacial region. These findings may shed light on molecular details of amyloid cytotoxicity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Fink AL (1998) Protein aggregation: folding aggregates, inclusion bodies and amyloid. Fold Des 3:R9–R23

    Article  CAS  PubMed  Google Scholar 

  2. Serpell LC (2000) Alzheimer’s amyloid fibrils: structure and assembly. Biochim Biophys Acta 1502:16–30

    Article  CAS  PubMed  Google Scholar 

  3. Gorbenko GP, Kinnunen PKJ (2006) The role of lipid–protein interactions in amyloid-type protein fibril formation. Chem Phys Lipids 141:72–82

    Article  CAS  PubMed  Google Scholar 

  4. Zerovnik E (2002) Amyloid-fibril formation. Proposed mechanisms and relevance to conformational disease. Eur J Biochem 269:3362–3371

    Article  CAS  PubMed  Google Scholar 

  5. Dobson CM (2003) Protein folding and misfolding. Nature 426:884–890

    Article  CAS  PubMed  Google Scholar 

  6. Lu JX, Qiang W, Yau WM, Schwieters CD, Meredith SC, Tycko R (2000) Molecular structure of β-amyloid fibril in Alzheimer’s disease brain issue. Cell 154:1257–1268

    Article  Google Scholar 

  7. Aisenbrey C, Borowik T, Byström R, Bokvist M, Lindström F, Misiak H, Sani M, Gröbner G (2008) How is protein aggregation in amyloidogenic diseases modulated by biological membranes? Eur Biophys J 37:247–255

    Article  CAS  PubMed  Google Scholar 

  8. Arispe N, Rojas E, Pollard H (2003) Alzheimer’s disease amyloid beta protein forms calcium channels in bilayer membranes: blockade by tromethamine and aluminium. Pro Natl Acad Sci 89:10940–10944

    Google Scholar 

  9. Gorbenko GP, Trusova VM (2011) Protein aggregation in a membrane environment. Adv Protein Chem Struct Biol 84:114–142

    Google Scholar 

  10. Bucciantini M, Cecchi C (2010) Biological membranes as protein aggregation matrices and targets of amyloid toxicity. Methods Mol Biol 648:231–243

    Article  CAS  PubMed  Google Scholar 

  11. Bucciantini M, Rigacci S, Stefani M (2014) Amyloid aggregation: role of biological membranes and the aggregate-membrane system. J Phys Chem Lett 5:517–527

    Article  CAS  Google Scholar 

  12. Demuro A, Mina E, Kayed R, Milton SC, Parker I, Glabe CG (2005) Calcium dysregulation and membrane disruption as a ubiquitous neurotoxic mechanism of soluble amyloid oligomers. J Biol Chem 280:17294–17300

    Article  CAS  PubMed  Google Scholar 

  13. Lashuel HA, Lansbury PT (2006) Are amyloid diseases caused by protein aggregates that mimic bacterial pore-forming toxins? Q Rev Biophys 39:167–201

    Article  CAS  PubMed  Google Scholar 

  14. Smith P, Brender J, Ramamoorthy A (2009) The induction of negative curvature as a mechanism of cell toxicity by amyloidogenic peptides. The case of islet amyloid polypeptide. J Am Chem Soc 131:4470–4478

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  15. de Planque RR, Raussen V, Contera SA, Rijkers DTS, Liskamp RMJ, Ruysschaert JM, Ryan JF, Separovic F, Watts A (2007) β-sheet structured β-amyloid (1–40) perturbs phosphatidylcholine model membranes. J Mol Biol 368:982–987

    Article  PubMed  Google Scholar 

  16. Lee CC, Sun Y, Huang H (2012) How type II diabetes-related islet amyloid polypeptide damages lipid bilayers. Biophys J 102:1059–1068

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  17. Verdier Y, Zarandi M, Penke B (2004) Amyloid beta-peptide interactions with neuronal and glial cell plasma membrane: binding sites and implications for Alzheimer’s disease. J Pept Sci 10:229–248

    Article  CAS  PubMed  Google Scholar 

  18. Sciacca MF, Brender JR, Lee DK, Ramamoorthy A (2012) Phosphatidylethanolamine enhances amyloid-fiber dependent membrane fragmentation. Biochemistry 51:7676–7684

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  19. Butterfield DA, Castegna A, Lauderback CM, Drake J (2002) Evidence that amyloid beta-peptide-induced lipid peroxidation and its sequelae in Alzheimer’s disease brain contribute to neuronal death. Neurobiol Aging 23:655–664

    Article  PubMed  Google Scholar 

  20. Obici L, Franceschini G, Calabresi L, Giorgetti S, Stoppini M, Merlini G, Bellotti V (2006) Structure, function and amyloidogenic propensity of apolipoprotein A-I. Amyloid 13:191–205

    Article  CAS  PubMed  Google Scholar 

  21. Rosenson RS, Brewer HB Jr, Davidson WB, Fayad ZA, Fuster V, Goldstein J, Hellerstein M, Jiang XC, Phillips MC, Rader DJ, Remaley AT, Rothblat GH, Tall AR, Yvan-Charvet L (2012) Cholesterol efflux and atheroprotection: advancing the concept of reverse cholesterol transport. Circulation 125:1905–1919

    Article  PubMed Central  PubMed  Google Scholar 

  22. Phillips MC (2013) New insights into the determination of HDL structure by apolipoproteins: thematic review series: high density lipoprotein structure, function, and metabolism. J Lipid Res 54:2034–2048

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  23. Genschel J, Haas R, Propsting MJ, Schmidt H (1998) Apolipoprotein A-I induced amyloidosis. FEBS Lett 430:145–149

    Article  CAS  PubMed  Google Scholar 

  24. Monti DM, Guglielmi F, Monti M, Cozzlino F, Torrassa S, Relini A, Pucci P, Arciello A, Piccoli R (2010) Effects of a lipid environment on the fibrillogenic pathway of the N-terminal polypeptide of human apolipoprotein a-I, responsible for in vivo amyloid fibril formation. Eur Biophys J 39:1289–1299

    Article  CAS  PubMed  Google Scholar 

  25. Adachi E, Kosaka A, Tsuji K, Mizuguchi C, Kawashima H, Shigenaga A, Nagao K, Akaji K, Otaka A, Saito H (2014) The extreme N-terminal region of human apolipoprotein A-I has a strong propensity to form amyloid fibrils. FEBS Lett 588:389–394

    Article  CAS  PubMed  Google Scholar 

  26. Lagerstedt JO, Cavigiolio G, Roberts LM, Hong HS, Jin LW, Fitzgerald PG, Oda MN, Voss JC (2007) Mapping the structural transition in an amyloidogenic apolipoprotein A-I. Biochemistry 46:9693–9699

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  27. Chetty PS, Ohshiro M, Saito H, Dhanasekaran P, Lund-Katz S, Mayne L, Englander W, Phillips MC (2012) Effect of the Iowa and Milano mutations on the apolipoprotein A-I structure and dynamics determined by hydrogen exchange and mass spectrometry. Biochemistry 51:8993–9001

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  28. Das M, Mei X, Jayaraman S, Atkinson D, Gursky O (2014) Amyloidogenic mutations in human apolipoprotein A-I are not necessarily destabilizing—a common mechanism of apolipoprotein A-I misfolding in familial amyloidosis and atherosclerosis. FEBS J 281:2525–2542

    Article  CAS  PubMed  Google Scholar 

  29. Adachi E, Nakajima H, Mizuguchi C, Dhanasekaran P, Kawashima H, Nagao K, Akaji K, Lund-Katz S, Phillips MC, Saito H (2013) Dual role of an N-terminal amyloidogenic mutation in apolipoprotein A-I: destabilization of helix bundle and enhancement of fibril formation. J Biol Chem 288:2848–2856

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  30. Groenning M (2010) Binding mode of Thioflavin T and other molecular probes in the context of amyloid fibrils—current status. J Chem Biol 3:1–18

    Article  PubMed Central  PubMed  Google Scholar 

  31. Parasassi T, Krasnowska EK, Bagatolli L, Gratton E (1998) Laurdan and Prodan as polarity-sensitive fluorescent membrane probes. J Fluoresc 8:365–373

    Article  CAS  Google Scholar 

  32. Girych M, Gorbenko G, Trusova V, Adachi E, Mizuguchi C, Nagao K, Kawashima H, Akaji K, Phillips M, Saito H (2014) Interaction of thioflavin T with amyloid fibrils of apolipoprotein A-I N-terminal fragment: resonance energy transfer study. J Struct Biol 185:116–124

    Article  CAS  PubMed  Google Scholar 

  33. Sanchez SA, Tricerri MA, Gratton E (2012) Laurdan generalized polarization fluctuations measures membrane packing micro-heterogeneity in vivo. Proc Natl Acad USA 109:7314–7319

    Article  CAS  Google Scholar 

  34. Parasassi T, Stasio GD, Ravagnan G, Rusch RM, Gratton E (1991) Quantification of lipid phases in phospholipid vesicles by the generalized polarization of Laurdan fluorescecne. Biophys J 60:179–189

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  35. Parasassi T, Stefano M, Loiero M, Ravagnan G, Gratton E (1994) Influence of cholesterol on phospholipid bilayer phase domains as detected by Laurdan fluorescence. Biophys J 66:120–132

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  36. McConnell HM, Radhakrishnan A (2003) Condensed complexes of cholesterol and phospholipids. Biochim Biophys Acta 1610:159–173

    Article  CAS  PubMed  Google Scholar 

  37. Huang J (2002) Exploration of molecular interactions in cholesterol superlattices: effect of multibody interactions. Biophys J 83:1014–1025

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  38. Dai J, Alwarawrah M, Huang J (2010) Instability of cholesterol clusters in lipid bilayers and the cholesterol’s umbrella effect. J Phys Chem B 114:840–859

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  39. Daly T, Wang M, Regen SL (2011) The origin of cholesterol’s condensing effect. Langmuir 27:2159–2161

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  40. Domanov Y, Kinnunen PKJ (2008) Islet amyloid polypeptide forms rigid lipid-protein amyloid fibrils on supported phospholipid bilayers. J Mol Biol 376:42–54

    Article  CAS  PubMed  Google Scholar 

  41. Sparr E, Engel M, Sakharov D, Sprong M, Jacobs J, de Kruijff B, Höppener J, Killian JA (2004) Islet amyloid polypeptide-induced membrane leakage involves uptake of lipids by forming amyloid fibers. FEBS Lett 577:117–120

    Article  CAS  PubMed  Google Scholar 

  42. Michikawa M, Gong JS, Fan QW, Sawamura N, Yanagisawa K (2001) A novel action of Alzheimer’s amyloid β-protein (Aβ): oligomeric Aβ promoted lipid release. J Neurosci 21:7226–7235

    CAS  PubMed  Google Scholar 

  43. Zhao H, Tuominen EKJ, Kinnunen PKJ (2004) Formation of amyloid fibers triggered by phosphatidylserine-containing membranes. Biochemistry 43:10302–10307

    Article  CAS  PubMed  Google Scholar 

  44. Loura LM, do Canto AM, Martins J (2013) Sensing hydration and behavior of pyrene in POPC and POPC/cholesterol bilayers: a molecular dynamics study. Biochim Biophys Acta 1828:1094–1101

    Article  CAS  PubMed  Google Scholar 

  45. Kalyanasundaram K, Thomas JK (1977) Environmental effects on vibronic band intensities in pyrene monomer fluorescence and their application in studies of micellar systems. J Am Chem Soc 99:2039–2044

    Article  CAS  Google Scholar 

  46. Karpovich DS, Blanchard GJ (1995) Relating the polarity-dependent fluorescence response to vibronic coupling. Achieving a fundamental understanding of the py polarity scale. J Phys Chem 99:3951–3958

    Article  CAS  Google Scholar 

  47. Tedeshi C, Mohwald H, Kirstein S (2001) Polarity of layer-by-layer deposited polyelectrolyte films as determined by pyrene fluorescence. J Am Chem Soc 123:954–960

    Article  Google Scholar 

  48. Ioffe VM, Gorbenko GP (2005) Lysozyme effect on structural state of model membranes as revealed by pyrene excimerization studies. Biophys Chem 114:199–204

    Article  CAS  PubMed  Google Scholar 

  49. Kinnunen PKJ, Koiv A, Lehtonen JYA, Mustonen P (1994) Lipid dynamics and peripheral interactions of proteins with membrane surfaces. Chem Phys Lett 73:181–207

    CAS  Google Scholar 

  50. Cecchi C, Baglioni S, Fiorillo C, Pensalfini A, Liguri G, Nosi D, Rigacci S, Bucciantini M, Stefani M (2005) Insights into the molecular basis of the differing susceptibility of varying cell types to the toxicity of amyloid aggregates. J Cell Sci 118:3459–3470

    Article  CAS  PubMed  Google Scholar 

  51. Muller WE, Kirsch C, Eckert G (2001) Membrane-disordering effects of β-amyloid peptides. Biochem Soc Trans 29:617–624

    Article  CAS  PubMed  Google Scholar 

  52. Kastorna A, Trusova V, Gorbenko G, Kinnunen P (2012) Membrane effects of lysozyme amyloid fibrils. Chem Phys Lipids 165:331–337

    Article  CAS  PubMed  Google Scholar 

  53. Cecchini P, Franceschi G, Frare E, Fontana A, de Laureto P (2012) The role of tryptophan in protein fibrillogenesis: relevance of Trp7 and Trp14 to the amyloidogenic properties of myoglobin. Protien Eng Des Sel 25:199–203

    Article  CAS  Google Scholar 

  54. Girych M, Maliyov I, Romanova M, Gorbenko G, Adachi E, Mizuguchi C, Molotkovsky J, Saito H (2013) Fluorescence energy transfer study of the lipid bilayer interactions with truncated apolipoprotein A-I mutants. Biophys Bull 29:39–50

    Google Scholar 

  55. Gautier R, Douguet D, Antonny B, Drin G (2008) HeliQuest: a web server to screen sequences with specific alpha-helical properties. Bioinformatics 24:2101–2102

    Article  CAS  PubMed  Google Scholar 

  56. Keller R (2011) New user-friendly approach to obtain an Eisenberg plot and its use as a practical tool in protein sequence analysis. Int J Mol Sci 21:5577–5591

    Article  Google Scholar 

  57. Palgunachari MN, Mishra VK, Lund-Katz S, Phillips MC, Adeyeye SO, Alluri S, Anantharamaiah GM, Segrest JP (1996) Only the two end helixes of eight tandem amphipathic helical domains of human apo A-I have significant lipid affinity. Implications for HDL assembly. Arterioscler Thromb Vasc Biol 16:328–338

    Article  CAS  PubMed  Google Scholar 

  58. Boucrot E, Pick A, Camdere G, Liska N, Evergren E, McMahon HT, Kozlov M (2012) Membrane fission is promoted by insertion of amphipathic helices and is restricted by crescent BAR domains. Cell 149:124–136

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  59. Milanesi L, Sheynis T, Xue WF, Orlova EV, Hellewell AL, Jelinek R, Hewitt EW, Radford S, Saibil HR (2012) Direct three-dimensional visualization of membrane disruption by amyloid fibrils. Proc Natl Acad Sci 109:20455–20460

    Article  PubMed Central  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by the grant from Fundamental Research State Fund of Ukraine (project number F54.4/015) and Grant-in-Aid for Scientific Research 25293006 (to H.S.) from the Japan Society for the Promotion of Science.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Valeriya Trusova.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Trusova, V., Gorbenko, G., Girych, M. et al. Membrane Effects of N-Terminal Fragment of Apolipoprotein A-I: A Fluorescent Probe Study. J Fluoresc 25, 253–261 (2015). https://doi.org/10.1007/s10895-015-1501-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10895-015-1501-9

Keywords

Navigation