Skip to main content
Log in

Backbone dynamics of bacteriorhodopsin as studied by 13C solid-state NMR spectroscopy

  • Biophysics Letter
  • Published:
European Biophysics Journal Aims and scope Submit manuscript

Abstract

The surface dynamics of bacteriorhodopsin was examined by measurements of site-specific 13C–1H dipolar couplings in [3-13C]Ala-labeled bacteriorhodopsin. Motions of slow or intermediate frequency (correlation time <50 µs) scale down 13C–1H dipolar couplings according to the motional amplitude. The two-dimensional dipolar and chemical shift (DIPSHIFT) correlation technique was utilized to obtain the dipolar coupling strength for each resolved peak in the 13C MAS solid-state NMR spectrum, providing the molecular order parameter of the respective site. In addition to the rotation of the Ala methyl group, which scales the dipolar coupling to 1/3 of the rigid limit value, fluctuations of the Cα–Cβ vector result in additional motional averaging. Typical order parameters measured for mobile sites in bacteriorhodopsin are between 0.25 and 0.29. These can be assigned to Ala103 of the C–D loop and Ala235 at the C-terminal α-helix protruded from the membrane surface, and Ala196 of the F–G loop, as well as to Ala228 and Ala233 of the C-terminal α-helix and Ala51 from the transmembrane α-helix. Such order parameters departing significantly from the value of 0.33 for rotating methyl groups are obviously direct evidence for the presence of fluctuation motions of the Ala Cα–Cβ vectors of intact preparations of fully hydrated, wild-type bacteriorhodopsin at ambient temperature. The order parameter for Ala160 from the expectantly more flexible E–F loop, however, is unavailable under highest-field NMR conditions, probably because increased chemical shift anisotropy together with intrinsic fluctuation motions result in an unresolved 13C NMR signal.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.

Similar content being viewed by others

References

  • Alexiev BW, Mollaaghaba RG, Khorana HG, Heyn MP (1998) Structure of the interhelical loops and carboxyl terminus of bacteriorhodopsin X-ray diffraction using site-directed-atom labeling. Biochemistry 37:10411–100419

    Article  PubMed  Google Scholar 

  • Bennett AE, Rienstra CM, Auger M, Lakshmi KV, Griffin RG (1995) Heteronuclear decoupling in rotating solids. J Chem Phys 103:6951–6958

    Article  CAS  Google Scholar 

  • Beshah K, Olejniczak ET, Griffin RG (1987) Deuterium NMR study of methyl group dynamics in L-alanine. J Chem Phys 86:4730–4736

    Article  CAS  Google Scholar 

  • Bielecki A, Kolbert AC, Levitt MH (1989) Frequency-switched pulse sequences: homonuclear decoupling and dilute spin NMR in solids. Chem Phys Lett 155:341–345

    Article  CAS  Google Scholar 

  • Bowers JL, Oldfield E (1988) Quantitative carbon-13 nuclear magnetic resonance spectroscopy study of mobile residues in bacteriorhodopsin. Biochemistry 27:5156–5161

    CAS  Google Scholar 

  • Branden C, Tooze J (1998) Introduction to protein structure. Garland, New York

  • Dencher NA, Sass HJ, Buldt G (2000) Water and bacteriorhodopsin: structure, dynamics, and function. Biochim Biophys Acta 1460:192–203

    Article  CAS  PubMed  Google Scholar 

  • Essen L, Siegret R, Lehmann WD, Oesterhelt D (1998) Lipid patches in membrane protein oligomers: crystal structure of the bacteriorhodopsin-lipid complex. Proc Natl Acad Sci USA 95:11673–11678

    CAS  PubMed  Google Scholar 

  • Grigorieff N, Ceska TA, Downing KH, Baldwin JM, Henderson R (1996) Electron-crystallographic refinement of the structure of bacteriorhodopsin. J Mol Biol 259:393–421

    CAS  PubMed  Google Scholar 

  • Hamasaki N, Abe Y, Tanner MJ (2002) Flexible regions within the membrane-embedded portions of polytopic membrane proteins. Biochemistry 41:3852–3854

    Article  CAS  PubMed  Google Scholar 

  • Hong M, Gross JD, Griffin RG (1997) Site-resolved determination of peptide torsion angle Φ from relative orientations of backbone N-H and C-H bonds by solid-state NMR. J Phys Chem 101:5869–5874

    Article  CAS  Google Scholar 

  • Huster D, Xiao L, Hong M (2001) Solid-state NMR investigation of the dynamics of soluble and membrane-bound colicin Ia channel-forming domain. Biochemistry 40:7662–7674

    CAS  PubMed  Google Scholar 

  • Kawase Y, Tanio M, Kira A, Yamaguchi S, Tuzi S, Naito A, Kataoka M, Lanyi JK, Needleman R, Saitô H (2000) Alteration of conformation and dynamics of bacteriorhodopsin induced by protonation of Asp 85 and deprotonation of Schiff base as studied by 13C NMR. Biochemistry 39:14472–14480

    CAS  PubMed  Google Scholar 

  • Keniry MA, Gutowsky HS, Oldfield E (1984) Surface dynamics of the integral membrane protein bacteriorhodopsin. Nature 307:383–386

    CAS  PubMed  Google Scholar 

  • Kimura S, Naito A, Tuzi S, Saitô H (2002) Dynamics and orientation of transmembrane peptide from bacteriorhodopsin incorporated into lipid bilayer as revealed by solid state 31P and 13C NMR spectroscopy. Biopolymers 63:122–131

    Article  CAS  PubMed  Google Scholar 

  • Kolbert AC, de Groot HJM, Levitt MH, Munowitz MG, Roberts JE, Harbison GS, Herzfeld J, Griffin RG (1990) Two-dimensional dipolar-chemical shift NMR in rotating solids. In: Granger P, Harris RK (eds) Multinuclear magnetic resonance in liquids and solids – chemical applications. Kluwer, Dordrecht, pp 339–54

  • Krebs MP, Behrens W, Mollaaghababa RG, Khorana HG, Heyn MP (1993) X-ray diffraction of a cystein-containing bacteriorhodopsin mutant and its mercury derivative. Localization of an amino acid residue in the loop of an integral membrane protein. Biochemistry 32:12830–12834

    CAS  PubMed  Google Scholar 

  • Lindeberg M, Zakharov SD, Cramer WA (2000) Unfolding pathway of the colicin E1 channel protein on a membrane surface. J Mol Biol 295:679–692

    Article  CAS  PubMed  Google Scholar 

  • Luecke H, Richter HT, Lanyi JK (1998) Proton transfer pathways in bacteriorhodopsin at 2.3 angstrom resolution. Science 280:1934–1937

    CAS  PubMed  Google Scholar 

  • Marque J, Kinoshita K Jr, Govindjee R, Ikegami A, Ebrey TG, Otomo J (1986) Environmental modulation of C-terminal dynamic structure in bacteriorhodopsin. Biochemistry 25:5555–5559

    CAS  Google Scholar 

  • Neutze R, Pebay-Peyroula E, Edman K, Royant A, Navarro J, Landau EM (2002) Bacteriorhodopsin: a high-resolution structural view of vectorial proton transport. Biochim Biophys Acta 1565:144–167

    Article  CAS  PubMed  Google Scholar 

  • Oesterhelt D, Stoeckenius W (1974) Isolation of the cell membrane of Halobacterium halobium and its fractionation into red and purple membrane. Methods Enzymol 31:667–678

    PubMed  Google Scholar 

  • Opella SJ (1986) Protein dynamics by solid state nuclear magnetic resonance. Methods Enzymol 131:327–361

    CAS  PubMed  Google Scholar 

  • Palmer AG III, Williams J, McDermott A (1996) Nuclear magnetic resonance studies of biopolymer dynamics. J Phys Chem 100:13293–13310

    Article  CAS  Google Scholar 

  • Pebay-Peyroula E, Rummel G, Rosenbusch JP, Landau EM (1997) X-ray structure of bacteriorhodopsin at 2.5 angstroms from microcrystals grown in lipidic cubic phases. Science 277:1676–1681

    PubMed  Google Scholar 

  • Renthal R, Dawson N, Tuley J, Horowitz P (1983) Constraints on the flexibility of bacteriorhodopsin's carboxyl terminal tail at the purple membrane surface. Biochemistry 22:5–11

    CAS  PubMed  Google Scholar 

  • Rothwell WP, Waugh JS (1981) Transverse relaxation of dipolar coupled spin systems under rf irradiation: detecting motions in solids. J Chem Phys 74:2721–2732

    Article  CAS  Google Scholar 

  • Saitô H (1986) Conformation-dependent 13 C chemical shifts: a new means of conformational characterization as obtained by high-resolution solid-state 13C NMR. Magn Reson Chem 24:835–852

    Google Scholar 

  • Saitô H, Ando I (1989) High-resolution solid-state NMR studies on synthetic and biological macromolecules. Annu Rep NMR Spectrosc 21:209–290

    Google Scholar 

  • Saitô H, Tuzi S, Yamaguchi S, Tanio M, Naito A (2000) Conformation and backbone dynamics of bacteriorhodopsin revealed by 13C-NMR. Biochim Biophys Acta 1460:39–48

    PubMed  Google Scholar 

  • Saitô H, Kawaminami R, Tanio M, Arakawa T, Yamaguchi S, Tuzi S (2002a) Dynamic aspect of bacteriorhodopsin as viewed from C-13 NMR: conformational elucidation, surface dynamics and information transfer from the surface to inner residues. Spectrosc Int J 16:107–120

    Google Scholar 

  • Saitô H, Tsuchida T, Ogawa K, Arakawa T, Yamaguchi S, Tuzi S (2002b) Residue-specific millisecond to microsecond fluctuations in bacteriorhodopsin induced by disrupted or disorganized two-dimensional crystalline lattice, through modified lipid-helix and helix-helix interactions, as revealed by 13C NMR. Biochim Biophys Acta 1565:97–106

    PubMed  Google Scholar 

  • Saitô H, Tuzi S, Tanio M, Naito A (2002c) Dynamic aspect of membrane proteins and membrane associated peptides as revealed by 13C NMR: lessons from bacteriorhodopsin as an intact protein. Annu Rep NMR Spectrosc 47:39–108

    Google Scholar 

  • Siminovitch DJ (1998) Solid-state NMR studies of proteins: the view from static 2H NMR experiments. Biochem Cell Biol 76:411–422

    Article  CAS  PubMed  Google Scholar 

  • Steinhoff HJ, Mollaaghababa RG, Altenbach C, Hideg K, Krebs M, Khorana HG, Hubbel WL (1994) Time-resolved detection of structural changes during the photocycle of spin-labeled bacteriorhodopsin. Science 266:105–117

    CAS  PubMed  Google Scholar 

  • Suwelack D, Rothwell WP, Waugh JS (1980) Slow molecular motion detected in the NMR spectra of rotating solids. J Chem Phys 73:2559–2569

    Article  CAS  Google Scholar 

  • Tuzi S, Yamaguchi S, Naito A, Needleman R, Lanyi JK, Saitô H (1996) Conformation and dynamics of [3-13C]Ala-labeled bacteriorhodopsin and bacterioopsin, induced by interaction with retinal and its analogs, as studied by 13C nuclear magnetic resonance. Biochemistry 35:7520–7527

    Article  CAS  PubMed  Google Scholar 

  • Tuzi S, Hasegawa J, Kawaminami R, Naito A, Saitô H (2001) Regio-selective detection of dynamic structure of transmembrane alpha-helices as revealed from 13C NMR spectra of [3-13C]Ala-labeled bacteriorhodopsin in the presence of Mn2+ ion. Biophys J 81:425–434

    CAS  PubMed  Google Scholar 

  • Woolf TB (1997) Molecular dynamics of individual α-helices of bacteriorhodopsin in dimyristoyl phosphatidylcholine. I. Structure and dynamics. Biophys J 73:2376–2392

    CAS  PubMed  Google Scholar 

  • Yamaguchi S, Tuzi S, Tanio M, Naito A, Lanyi JK, Needleman R, Saitô H (2000) Irreversible conformational change of bacterio-opsin induced by binding of retinal during its reconstitution to bacteriorhodopsin, as studied by 13C NMR. J Biochem (Tokyo) 127:861–869

    Google Scholar 

  • Yamaguchi S, Yonebayashi K, Konishi H, Tuzi S, Naito A, Lanyi JK, Needleman R, Saitô H (2001) Cytoplasmic surface structure of bacteriorhodopsin consisting of interhelical loops and C-terminal alpha helix, modified by a variety of environmental factors as studied by 13C-NMR. Eur J Biochem 268:2218–2228

    CAS  PubMed  Google Scholar 

  • Yonebayashi K, Yamaguchi S, Tuzi S, Saitô H (2003) Cytoplasmic surface structures of bacteriorhodopsin modified by site-directed mutations and cation binding as revealed by 13C NMR. Eur Biophys J 32:1–11

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The junior research group is funded by the Saxon State Ministry of Higher Education, Research and Culture. The work was supported by the Deutsche Forschungsgemeinschaft (Ar-195/8-1). This work was also supported in part by a grant-in-aid for Scientific Research from KAKENHI from MEXT of Japan.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Hazime Saitô or Daniel Huster.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Barré, P., Yamaguchi, S., Saitô, H. et al. Backbone dynamics of bacteriorhodopsin as studied by 13C solid-state NMR spectroscopy. Eur Biophys J 32, 578–584 (2003). https://doi.org/10.1007/s00249-003-0305-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00249-003-0305-z

Keywords

Navigation