Skip to main content

Advertisement

Log in

Vertical distribution of denitrification potential, denitrifying bacteria, and benzoate utilization in intertidal microbial mat communities

  • Published:
Microbial Ecology Aims and scope Submit manuscript

Abstract

Aspects of denitrification and benzoate degradation were studied in two estuarine microbial mat communities on the California coast by measuring the depth distributions of potential denitrification rates, genetic potential for denitrification, nitrate concentration, benzoate mineralization rates, total bacterial abundance, and abundance of a denitrifying strain (TBD-8b) isolated from one of the sites. Potential denitrification was detected in microbial mat cores from both Elkhorn Slough and Tomales Bay. Maximum denitrification rates were more than two orders of magnitude higher at Elkhorn Slough (3.14 mmol N m−2 d−1) than at Tomales Bay (0.02 mmol N m−2 d−1), and at both sites, the maximum rates occurred in the 0–2 mm depth interval. Ambient pore [NO3+NO2] was substantially higher at Elkhorn Slough than at Tomales Bay. Incorporation and mineralization of benzoate was maximal near the mat surface at Elkhorn Slough. The areal rate of benzoate utilization was 1045 nmol C m−2 d−1, which represented utilization of 70% of the added substrate in 24 h. Total bacterial and TBD-8b abundances were greatest near the surface at both Tomales Bay and Elkhorn Slough, and TBD-8b represented less than 0.2% of the total. Genetic potential for denitrification, quantified by hybridization with a nitrite reductase gene fragment, was present below the mat surface at average levels representing presence of the gene in approximately 10% of the total cells.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. ABA Consultants (1989) Elkhorn Slough wetland management plan. ABA Consultants, Environmental research, assessment and planning Capitola, CA

    Google Scholar 

  2. Atlas RM (1981) Microbial degradation of petroleum hydrocarbons: An environmental perspective. Microbiol Rev 45:180–209

    PubMed  CAS  Google Scholar 

  3. Bauld J (1984) Microbial mats in marginal marine environments: Shark Bay, Western Australia and Spencer Gulf, South Australia. In: Cohen Y, Castenholz R, Halvorson H (eds) Microbial Mats: Stromatolites. Alan R Liss, New York, pp 39–58

    Google Scholar 

  4. Bossert I, Bartha R (1984) The fate of petroleum in soil ecosystems In: Atlas RM (ed) Petroleum Microbiology. Macmillan, New York pp 434–476

    Google Scholar 

  5. Caffrey JM, Shaw S, Silberstein M, De Vogelaere A, White M, (1997) Water quality monitoring in Elkhon Slough: A summary result 1988–1996. A report to Elkhorn Slough National Estuarine Research Reserve.

  6. Canfield DE, Des Marais DJ (1993) Biogeochemical cycles of carbon, sulfur and free oxygen in a microbial mat. Geochim Cosmochim Acta 57:3971–3984

    Article  PubMed  CAS  Google Scholar 

  7. Carlucci AF, Pramer D (1957) Factors influencing the plate method for determining abundance of bacteria in sea water. Proc Soc Exp Biol Med 96:392–394

    PubMed  CAS  Google Scholar 

  8. Chaudhry GR, Chapalamadugu S (1991) Biodegradation of halogenated organic compounds. Microbiol Rev 55:59–79

    PubMed  CAS  Google Scholar 

  9. Cohen Y, Castenholz R, Halvorson H (1984) The interdisciplinary approach to the study of microbial mats: Perspectives for future research discussion. In: Cohen Y, Castenholz R, Halvorson H (eds) Microbial Mats: Stromatolites. Alan R Liss, New York pp 471–477

    Google Scholar 

  10. Cohen Y, Rosenberg E (1989) Microbial mats: Physiological ecology of benthic microbial communities. Amer Soc Microbiol, Washington, DC, 494 pp.

    Google Scholar 

  11. Craven DB, Jahnke RA, Carlucci AF (1986) Fine-scale vertical distributions of microbial biomas and activity in California Borderland sediments. Deep-Sea Res 33:379–390

    Article  Google Scholar 

  12. Dahle AB, Laake M (1982) Diversity dynamics of marine bacteria studied by immunofluorescent staining on membrane filters. Appl Environ Microb 43:169–176

    Google Scholar 

  13. Daugherty DD, Karel SF (1994) Degradation of 2,4-dichlorophenoxyacetic acid by Pseudomonas cepacia DBO1 (pRO101) in a dual-substrate chemostat. Appl Environ Microbiol 60:3261–3267

    PubMed  CAS  Google Scholar 

  14. Evans PJ, Mang DT, Kim KS, Young LY (1991) Anaerobic degradation of toluene by a denitrifying bacterium. Appl Environ Microbiol 57:1139–1145

    PubMed  CAS  Google Scholar 

  15. Francis CA, Francis AK, Golet DS, Ward BB (1998) Quantification of catechol 2,3-dioxygenase gene homology abundance in intertidal sediments. Aq Microb Ecol 15:225–231

    Google Scholar 

  16. Galli E (1994) The role of microorganisms in environmental decontamination. In: Renzoni A, Mattei N, Lari L, Fossi M (eds) Contaminants in the Environment: A Multidisciplinary Assessment of Risks to Man and Other Organisms. CRC Press, Inc, Boca Raton, FL, pp 235–246

    Google Scholar 

  17. Guo C, Sun W, Harsh JB, Ogram A (1997) Hybridization analysis of microbial DNA from fuel oil-contaminated and noncontaminated soil. Microb Ecol 34:178–187 DOI: 10.1007/s002489900047

    Article  PubMed  CAS  Google Scholar 

  18. Herbes SE, Schwall LR (1978) Microbial transformation of polycyclic aromatic hydrocarbons in pristine and petroleum-contaminated sediments. Appl Environ Microbiol 35:306–316

    PubMed  CAS  Google Scholar 

  19. Hogan ME, Ward BB (1998) Response of a marine sediment microbial community exposed to 2,4-dichlorophenoxyacetic acid. Microb Ecol 35:72–82 DOI: 10.1007/s002489900061

    Article  PubMed  CAS  Google Scholar 

  20. Jensen K, Sloth NP, Risgaard-Petersen N, Rysgaard S, Revsbech NP (1994) Estimation of nitrification and denitrification from in microprofiles of oxygen and nitrate in model sediment systems. Appl Environ Microbiol 60:2094–2100

    PubMed  CAS  Google Scholar 

  21. Jones M (1984) Nitrate reduction by shaking with cadmium: Alternative to cadmium columns. Water Res 18:643–646

    Article  CAS  Google Scholar 

  22. Joye SB, Paerl HW (1993a) Contemporaneous nitrogen fixation and denitrification in intertidal microbial mats: Rapid response to runoff events. Mar Ecol Prog Ser 94:267–274

    CAS  Google Scholar 

  23. Joye SB, Paerl HW (1993b) Nitrogen fixation and denitrification in the intertidal and subtidal environments of Tomales Bay, California. In: Oremland RS (ed) The Biogeochemistry of Global Change: Radiative Trace Gases. Blackwell Scientific, New York, pp 633–653

    Google Scholar 

  24. Joye SB, Paerl HW (1994) Nitrogen cycling in microbial mats: Rates and patterns of denitrification and nitrogen fixation. Mar Biol 119:285–295

    Article  CAS  Google Scholar 

  25. Kerkhof L (1991) A comparison of substrates for quantifying the signal from a nonradiolabeled DNA probe. Anal Biochem 205:359–364

    Article  Google Scholar 

  26. Kuhn EP, Zeyer J, Eicher P, Schwarzenbach RP (1988) Anaerobic degradation of alkylated benzenes in denitrifying laboratory aquifer columns. Appl Environ Microbiol 54:490–496

    PubMed  CAS  Google Scholar 

  27. Largier JL, Hollibaugh JT, Smith SV (1997) Seasonally hypersaline estuaries in Mediterranean-climate regions. Est Coast Shelf Sci 45:789–797

    Article  Google Scholar 

  28. Leahy JG, Colwell RR (1990) Microbial degradation of hydrocarbons in the environment. Microbiol Rev 54:305–315

    PubMed  CAS  Google Scholar 

  29. Leahy JG, Somerville CC, Cunningham KA, Adamantiades GA, Byrd JJ, Colwell RR (1990) Hydrocarbon mineralization in sediments and plasmid incidence in sediment bacteria from the Campeche Bank. Appl Environ Microb 56:1565–1570

    CAS  Google Scholar 

  30. Michelcic JR, Luthy RG (1988a) Degradation of polycyclic aromatic hydrocarbon compounds under various redox conditions in soil-water systems. Appl Environ Microbiol 54:1182–1187

    Google Scholar 

  31. Michelcic JR, Luthy RG (1988b) Microbial degradation of acenaphthene and naphthalene under denitrification conditions in soil-water systems. Appl Environ Microbiol 54:1188–1198

    Google Scholar 

  32. Miller LG, Oremland RS, Paulsen S (1986) Measurement of nitrous oxide reductase activity in aquatic sediments. Appl Environ Microbiol 51:18–24

    PubMed  CAS  Google Scholar 

  33. Muyzer G, deBruyn AC, Schmedding DJM, Bos P, Westbroek P, Kuenen GJ (1987) A combined immunofluorescene-DNA-fluorescence staining technique for enumeration of Thiobacillus ferrooxidans in a population of acidophilic bacteria. Appl Environ Microbiol 53:660–664

    PubMed  Google Scholar 

  34. Oremland RS, Umberger C, Culbertson CW, Smith RL (1984) Denitrification in San Francisco Bay intertidal sediments. Appl Environ Microbiol 47:1106–1112

    PubMed  CAS  Google Scholar 

  35. Paerl HW, Bebout BM, Prufert LE (1989) Naturally occurring patterns of oxygenic photosynthesis and nitrogen fixation in marine microbial mats: Physiological and ecological ramifications. In: Cohen Y, Rosenberg E (eds) Microbial Mats: Physiological Ecology of Benthic Microbial Communities. Amer Soc Microbiol, Washington, DC, pp 326–341

    Google Scholar 

  36. Pfaender FK, Bartholomew GW (1982) Measurement of aquatic biodegradation rates by determining heterotrophic uptake of radiolabeled pollutants. Appl Environ Microbiol 44:159–164

    PubMed  CAS  Google Scholar 

  37. Porter KG, Feig YS (1980) The use of DAPI for identifying and counting aquatic microflora. Limnol Oceanogr 25:943–948

    Article  Google Scholar 

  38. Revsbech NP, Ward DM (1984) Microprofiles of dissolved substances and photosynthesis in microbial mats measured with microelectrodes. In: Cohen Y, Castenholz R, Halvorson H (eds) Microbial Mats: Stromatolites. Alan R Liss New York, pp 171–188

    Google Scholar 

  39. Satsangee R, Ghosh P (1990) Anaerobic degradation of phenol using an acclimated mixed culture. Appl Microbiol Biotechnol 34:127–130

    Article  CAS  Google Scholar 

  40. Shea TB (1994) An inexpensive densitometric analysis system using a Macintosh computer and a desktop scanner. Biotechniques 16:1126–1128

    PubMed  CAS  Google Scholar 

  41. Shiaris MP (1989a) Phenanthrene mineralization along a natural salinity gradient in an urban estuary, Boston Harbor, Massachusetts. Microb Ecol 18:135–146

    Article  CAS  Google Scholar 

  42. Shiaris MP (1989b) Seasonal biotransformation of naphthalene, phenanthrene, and benzo[a]pyrene in surficial estuarine sediments. Appl Environ Microbiol 55:1391–1399

    PubMed  CAS  Google Scholar 

  43. Smith SV, Hollibaugh JT, Dollar SJ, Vink S (1989) Tomales Bay, California: A case for carbon controlled nitrogen cycling. Limnol Oceanogr 34:37–52

    CAS  Google Scholar 

  44. Smith MR (1990) The biodegradation of aromatic hydrocarbons by bacteria. Biodegrad 1:191–206

    Article  CAS  Google Scholar 

  45. Song B, Haggblom MM, Zhou J, Tiedje JM, Palleroni NJ (1999) Taxonomic characterization of denitrifying bacteria that degrade aromatic compounds and description of Azoarcus toluvorans sp. nov. and Azoarcus toluclasticus sp. nov. Int J Syst Bacteriol 49:1129–1140

    Article  PubMed  CAS  Google Scholar 

  46. Sorensen J (1978) Denitrification rates in a marine sediment as measured by the acetylene inhibition technique. Appl Environ Microbiol 36:139–143

    PubMed  Google Scholar 

  47. Spain JC, Pritchard PH, Bourquin AW (1980) Effects of adaptation on biodegradation rates in sediment/water cores from estuarine and freshwater environments. Appl Environ Microbiol 40:726–734

    PubMed  CAS  Google Scholar 

  48. Stucki G, Alexander M (1987) Role of dissolution rate and solubility in biodegradation of aromatic compounds. Appl Environ Microbiol 53:292–297

    PubMed  CAS  Google Scholar 

  49. Systat: Statistics, Version 5.2 Edition. 1992. Systat, Inc, Evanston, IL, 724 pp.

  50. Ward BB, Cockcroft AR (1993) Immunofluorescence detection of the denitrifying strain Pseudomonas stutzeri (ATCC 14405) in seawater and intertidal sediment environments. Microb Ecol 25:233–246

    Article  Google Scholar 

  51. Ward BB, Cockcroft AR, Kilpatrick KA (1993) Antibody and DNA probes for detection of nitrite reductase in seawater. J Gen Microbiol 139:2285–2293

    PubMed  CAS  Google Scholar 

  52. Ward BB, Priscu JC (1997) Detection and characterization of denitrifying bacteria in an ice-covered Antarctic Lake. Hydrobiologia 347:57–68

    Article  CAS  Google Scholar 

  53. Ward DM, Brock TD (1978) Hydrocarbon biodegradation in hypersaline environments. Appl Environ Microbiol 35:353–359

    PubMed  CAS  Google Scholar 

  54. Yoshinari T, Knowles R (1976) Acetylene inhibition of nitrous oxide reduction by denitrifying bacteria. Biochem Biophys Commun 69:705–710

    Article  CAS  Google Scholar 

  55. Zeyer J, Kuhn EP, Schwarzenbach RP (1986) Rapid microbial mineralization of toluene and 1,3-dimethylbenzene in the absence of molecular oxygen. Appl Environ Microbiol 52:944–947

    PubMed  CAS  Google Scholar 

  56. Zumif WC (1992) The denitrifying prokaryotes. In: Ballows A (ed) The Prokaryotes, 2nd ed. Springer-Verlag, New York, pp 554–582

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to B. B. Ward.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Golet, D.S., Ward, B.B. Vertical distribution of denitrification potential, denitrifying bacteria, and benzoate utilization in intertidal microbial mat communities. Microb Ecol 42, 22–34 (2001). https://doi.org/10.1007/s002489900184

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s002489900184

Keywords

Navigation