Skip to main content
Log in

Uncovering the Secrets of Slow-Growing Bacteria in Tropical Savanna Soil Through Isolation and Genomic Analysis

  • Research
  • Published:
Microbial Ecology Aims and scope Submit manuscript

Abstract

One gram of soil holds ten billion bacteria of thousands of different species, but most remain unknown, and one of the serious issues is intrinsic to slow-growing bacteria. In this study, we aimed to isolate and characterize slow-growing bacteria from Brazilian Cerrado soil. Over a period of 4 weeks, we conducted an incubation process and selected a total of 92 isolates. These isolates, consisting mostly of slow-growing bacteria, have the ability to thrive in low-water conditions and possess features that promote plant growth. To identify the isolated bacteria, we performed 16S rRNA sequencing analysis and found that the slow-growing strains were genetically similar to known bacterial species but also belonged to a novel group of species. The new strains identified were Caballeronia sp., Neobacillus sp., Bradyrhizobium sp., and high GC Gram-positive species. Furthermore, we conducted growth experiments using various culture media and temperature conditions. These experiments revealed an extended lag phase for five strains, indicating their slow growth characteristics. Genomic analysis of these five slow-growing bacteria showed their potential to participate in biogeochemical cycles, metabolize various carbohydrates, encode proteins with a role in promoting plant growth and have biosynthetic potential for secondary metabolites. Taken together, our findings reveal the untapped potential of slow-growing bacteria in tropical savanna soils.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data availability

The names of the repositories/repositories and accession number(s) can be found in the Supplementary Material for this manuscript. The genomes were submitted to the National Center for Biotechnology Information (NCBI) GenBank under the bioproject number PRJNA950099.

References

  1. Staley JT, Konopka A (1985) Measurement of in situ activities of nonphotosynthetic microorganisms in aquatic and terrestrial habitats. Annu Rev Microbiol 39:321–346. https://doi.org/10.1146/annurev.mi.39.100185.001541

    Article  CAS  PubMed  Google Scholar 

  2. Fierer N (2017) Embracing the unknown: disentangling the complexities of the soil microbiome. Nat Rev Microbiol 15:579–590. https://doi.org/10.1038/nrmicro.2017.87

    Article  CAS  PubMed  Google Scholar 

  3. Amann RI, Ludwig W, Schleifer KH (1995) Phylogenetic identification and in situ detection of individual microbial cells without cultivation. Microbiol Rev 59:143–169. https://doi.org/10.1128/mr.59.1.143-169.1995

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Stewart EJ (2012) Growing unculturable bacteria. J Bacteriol 194:4151–4160. https://doi.org/10.1128/JB.00345-12

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Rappé MS, Giovannoni SJ (2003) The uncultured microbial majority. Annu Rev Microbiol 57:369–394. https://doi.org/10.1146/annurev.micro.57.030502.090759

    Article  CAS  PubMed  Google Scholar 

  6. Stevenson BS, Eichorst SA, Wertz JT et al (2004) New strategies for cultivation and detection of previously uncultured microbes. Appl Environ Microbiol 70:4748–4755. https://doi.org/10.1128/AEM.70.8.4748-4755.2004

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Schimel J, Schaeffer S (2012) Microbial control over carbon cycling in soil. Front Microbiol 3:348. https://doi.org/10.3389/fmicb.2012.00348

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Navarrete AA, Tsai SM, Mendes LW et al (2015) Soil microbiome responses to the short-term effects of Amazonian deforestation. Mol Ecol 24:2433–2448. https://doi.org/10.1111/mec.13172

    Article  CAS  PubMed  Google Scholar 

  9. Coutinho LM (2006) O conceito de bioma. Acta Bot Brasilica 20:13–23

    Article  Google Scholar 

  10. Klink CA, Machado RB (2005) Conservation of the Brazilian Cerrado. Conserv Biol 19:707–713. https://doi.org/10.1111/j.1523-1739.2005.00702.x

    Article  Google Scholar 

  11. Procópio L, Barreto C (2021) The soil microbiomes of the Brazilian Cerrado. J Soil Sediment 21:2327–2342. https://doi.org/10.1007/s11368-021-02936-9

    Article  Google Scholar 

  12. Araujo JF, de Castro AP, Costa MMC et al (2012) Characterization of soil bacterial assemblies in Brazilian Savanna-like vegetation reveals acidobacteria dominance. Microb Ecol 64:760–770. https://doi.org/10.1007/s00248-012-0057-3

    Article  CAS  PubMed  Google Scholar 

  13. Janssen PH, Yates PS, Grinton BE et al (2002) Improved culturability of soil bacteria and isolation in pure culture of novel members of the divisions Acidobacteria, Actinobacteria, Proteobacteria, and Verrucomicrobia. Appl Environ Microbiol 68:2391–2396. https://doi.org/10.1128/AEM.68.5.2391-2396.2002

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Kato S, Yamagishi A, Daimon S et al (2018) Isolation of previously uncultured slow-growing bacteria by using a simple modification in the preparation of agar media. Appl Environ Microbiol 84:e00807-18. https://doi.org/10.1128/AEM.00807-18

    Article  PubMed  PubMed Central  Google Scholar 

  15. Gonçalves OS, Souza TS, de Castro Gonçalves G et al (2023) Harnessing novel soil bacteria for beneficial interactions with soybean. Microorganisms 11. https://doi.org/10.3390/microorganisms11020300

  16. Tschech A, Pfennig N (1984) Growth yield increase linked to caffeate reduction in Acetobacterium woodii. Arch Microbiol 137:163–167. https://doi.org/10.1007/BF00414460

    Article  CAS  Google Scholar 

  17. Widdel F, Kohring G-W, Mayer F (1983) Studies on dissimilatory sulfate-reducing bacteria that decompose fatty acids. Arch Microbiol 134:286–294. https://doi.org/10.1007/BF00407804

    Article  CAS  Google Scholar 

  18. Kavamura VN, Santos SN, Silva JL da, et al (2013) Screening of Brazilian cacti rhizobacteria for plant growth promotion under drought. Microbiol Res 168:183–191. https://doi.org/10.1016/j.micres.2012.12.002

  19. Paulo EM, Vasconcelos MP, Oliveira IS et al (2012) An alternative method for screening lactic acid bacteria for the production of exopolysaccharides with rapid confirmation. Food Science and Technology 32:710–714. https://doi.org/10.1590/S0101-20612012005000094

    Article  Google Scholar 

  20. Gordon SA, Weber RP (1951) Colorimetric estimation of indoleacetic acid. Plant Physiol 26:192–195. https://doi.org/10.1104/pp.26.1.192

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Nautiyal CS (1999) An efficient microbiological growth medium for screening phosphate solubilizing microorganisms. FEMS Microbiol Lett 170:265–270. https://doi.org/10.1111/j.1574-6968.1999.tb13383.x

    Article  CAS  PubMed  Google Scholar 

  22. Schwyn B, Neilands JB (1987) Universal chemical assay for the detection and determination of siderophores. Anal Biochem 160:47–56. https://doi.org/10.1016/0003-2697(87)90612-9

    Article  CAS  PubMed  Google Scholar 

  23. Heuer H, Krsek M, Baker P et al (1997) Analysis of actinomycete communities by specific amplification of genes encoding 16S rRNA and gel-electrophoretic separation in denaturing gradients. Appl Environ Microbiol 63:3233–3241

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Altschul SF, Madden TL, Schäffer AA et al (1997) Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res 25:3389–3402. https://doi.org/10.1093/nar/25.17.3389

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Katoh K, Rozewicki J, Yamada KD (2019) MAFFT online service: multiple sequence alignment, interactive sequence choice and visualization. Brief Bioinform 20:1160–1166. https://doi.org/10.1093/bib/bbx108

    Article  CAS  PubMed  Google Scholar 

  26. Larkin MA, Wilm A, Higgins DG et al (2007) Clustal W and Clustal X version 2.0. Bioinformatics 23:2947–2948. https://doi.org/10.1093/bioinformatics/btm404

    Article  CAS  PubMed  Google Scholar 

  27. Tamura K, Stecher G, Kumar S (2021) MEGA11: Molecular Evolutionary Genetics Analysis Version 11. Mol Biol Evol 38:3022–3027. https://doi.org/10.1093/molbev/msab120

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Koeuth T, Versalovic J, Lupski JR (1995) Differential subsequence conservation of interspersed repetitive Streptococcus pneumoniae BOX elements in diverse bacteria. Genome Res 5:408–418. https://doi.org/10.1101/gr.5.4.408

    Article  CAS  PubMed  Google Scholar 

  29. Chan Y, Chen Y, Shi C et al (2017) SOAPnuke: a MapReduce acceleration supported software for integrated quality control and preprocessing of high-throughput sequencing data. Gigascience 7. https://doi.org/10.1093/gigascience/gix120

  30. Wick RR, Judd LM, Gorrie CL, Holt KE (2017) Unicycler: resolving bacterial genome assemblies from short and long sequencing reads. PLoS Comput Biol 13:e1005595

    Article  PubMed  PubMed Central  Google Scholar 

  31. Gurevich A, Saveliev V, Vyahhi N, Tesler G (2013) QUAST: quality assessment tool for genome assemblies. Bioinformatics 29:1072–1075. https://doi.org/10.1093/bioinformatics/btt086

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Parks D, Imelfort M, Skennerton C et al (2015) CheckM: Assessing the quality of microbial genomes recovered from isolates, single cells, and metagenomes. Genome Res 25. https://doi.org/10.1101/gr.186072.114

  33. Seemann T (2014) Prokka: rapid prokaryotic genome annotation. Bioinformatics 30:2068–2069. https://doi.org/10.1093/bioinformatics/btu153

    Article  CAS  PubMed  Google Scholar 

  34. Zhou Z, Tran PQ, Breister AM et al (2022) METABOLIC: high-throughput profiling of microbial genomes for functional traits, metabolism, biogeochemistry, and community-scale functional networks. Microbiome 10:33. https://doi.org/10.1186/s40168-021-01213-8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Cantalapiedra CP, Hernández-Plaza A, Letunic I et al (2021) eggNOG-mapper v2: functional annotation, orthology assignments, and domain prediction at the metagenomic scale. Mol Biol Evol 38:5825–5829. https://doi.org/10.1093/molbev/msab293

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Saier Jr MH, Reddy VS, Moreno-Hagelsieb G et al (2021) The Transporter Classification Database (TCDB): 2021 update. Nucleic Acids Res 49:D461–D467. https://doi.org/10.1093/nar/gkaa1004

    Article  CAS  PubMed  Google Scholar 

  37. Zhang H, Yohe T, Huang L et al (2018) dbCAN2: a meta server for automated carbohydrate-active enzyme annotation. Nucleic Acids Res 46:W95–W101. https://doi.org/10.1093/nar/gky418

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Patz S, Gautam A, Becker M et al (2021) PLaBAse: a comprehensive web resource for analyzing the plant growth-promoting potential of plant-associated bacteria bioRxiv 2021.12.13.472471. https://doi.org/10.1101/2021.12.13.472471

  39. Blin K, Shaw S, Steinke K et al (2019) antiSMASH 5.0: updates to the secondary metabolite genome mining pipeline. Nucleic Acids Res 47:W81–W87. https://doi.org/10.1093/nar/gkz310

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Lombard V, Golaconda Ramulu H, Drula E et al (2014) The carbohydrate-active enzymes database (CAZy) in 2013. Nucleic Acids Res 42:D490–D495. https://doi.org/10.1093/nar/gkt1178

    Article  CAS  PubMed  Google Scholar 

  41. Szabados L, Savouré A (2010) Proline: a multifunctional amino acid. Trends Plant Sci 15:89–97. https://doi.org/10.1016/j.tplants.2009.11.009

    Article  CAS  PubMed  Google Scholar 

  42. Roesch LFW, Fulthorpe RR, Riva A et al (2007) Pyrosequencing enumerates and contrasts soil microbial diversity. ISME J 1:283–290. https://doi.org/10.1038/ismej.2007.53

    Article  CAS  PubMed  Google Scholar 

  43. Sait M, Hugenholtz P, Janssen PH (2002) Cultivation of globally distributed soil bacteria from phylogenetic lineages previously only detected in cultivation-independent surveys. Environ Microbiol 4:654–666. https://doi.org/10.1046/j.1462-2920.2002.00352.x

    Article  CAS  PubMed  Google Scholar 

  44. Davis KER, Joseph SJ, Janssen PH (2005) Effects of growth medium, inoculum size, and incubation time on culturability and isolation of soil bacteria. Appl Environ Microbiol 71:826–834. https://doi.org/10.1128/AEM.71.2.826-834.2005

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Sait M, Davis KER, Janssen PH (2006) Effect of pH on isolation and distribution of members of subdivision 1 of the phylum Acidobacteria occurring in soil. Appl Environ Microbiol 72:1852–1857. https://doi.org/10.1128/AEM.72.3.1852-1857.2006

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Lewis K, Epstein S, D’Onofrio A, Ling LL (2010) Uncultured microorganisms as a source of secondary metabolites. J Antibiot 63:468–476. https://doi.org/10.1038/ja.2010.87

    Article  CAS  Google Scholar 

  47. Souza R, Ambrosini A, Passaglia LMP et al (2015) Plant growth-promoting bacteria as inoculants in agricultural soils. Genet Mol Biol 38:401–419. https://doi.org/10.1590/S1415-475738420150053

    Article  PubMed  PubMed Central  Google Scholar 

  48. Backer R, Rokem JS, Ilangumaran G et al (2018) Plant growth-promoting rhizobacteria: context, mechanisms of action, and roadmap to commercialization of biostimulants for sustainable agriculture. Front Plant Sci 9:1473. https://doi.org/10.3389/fpls.2018.01473

    Article  PubMed  PubMed Central  Google Scholar 

  49. Eshel G, Araus V, Undurraga S et al (2021) Plant ecological genomics at the limits of life in the Atacama Desert. Proc Natl Acad Sci 118:e2101177118. https://doi.org/10.1073/pnas.2101177118

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Dobritsa AP, Samadpour M (2016) Transfer of eleven species of the genus Burkholderia to the genus Paraburkholderia and proposal of Caballeronia gen. nov. to accommodate twelve species of the genera Burkholderia and Paraburkholderia. Int J Syst Evol Microbiol 66:2836–2846. https://doi.org/10.1099/ijsem.0.001065

    Article  CAS  PubMed  Google Scholar 

  51. Puri A, Padda KP, Chanway CP (2020) Can naturally-occurring endophytic nitrogen-fixing bacteria of hybrid white spruce sustain boreal forest tree growth on extremely nutrient-poor soils? Soil Biol Biochem 140:107642. https://doi.org/10.1016/j.soilbio.2019.107642

    Article  CAS  Google Scholar 

  52. Puri A, Padda KP, Chanway CP (2020) Sustaining the growth of Pinaceae trees under nutrient-limited edaphic conditions via plant-beneficial bacteria. PloS One 15:e0238055

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Jordan DC (1982) NOTES: Transfer of Rhizobium japonicum Buchanan 1980 to Bradyrhizobium gen. nov., a Genus of Slow-Growing, Root Nodule Bacteria from Leguminous Plants. Int J Syst Evol Microbiol 32:136–139. https://doi.org/10.1099/00207713-32-1-136

    Article  Google Scholar 

  54. Barka EA, Vatsa P, Sanchez L et al (2015) Taxonomy, physiology, and natural products of actinobacteria. Microbiol Mol Biol Rev 80:1–43. https://doi.org/10.1128/MMBR.00019-15

    Article  PubMed  PubMed Central  Google Scholar 

  55. Jones D, Keddie RM (2006) The genus Arthrobacter. In: Dworkin M, Falkow S, Rosenberg E, et al (eds) The Prokaryotes: Volume 3: Archaea. Bacteria: Firmicutes, Actinomycetes. Springer New York, New York, NY, pp 945–960

  56. Westerberg K, Elväng AM, Stackebrandt E, Jansson JK (2000) Arthrobacter chlorophenolicus sp. nov., a new species capable of degrading high concentrations of 4-chlorophenol. Int J Syst Evol Microbiol 50:2083–2092. https://doi.org/10.1099/00207713-50-6-2083

    Article  CAS  PubMed  Google Scholar 

  57. Aviles-Garcia ME, Flores-Cortez I, Hernández-Soberano C et al (2016) La rizobacteria promotora del crecimiento vegetal Arthrobacter agilis UMCV2 coloniza endofíticamente a Medicago truncatula. Rev Argent Microbiol 48:342–346. https://doi.org/10.1016/j.ram.2016.07.004

    Article  PubMed  Google Scholar 

  58. Xu X, Xu M, Zhao Q et al (2018) Complete genome sequence of Cd(II)-resistant Arthrobacter sp. PGP41, a plant growth-promoting bacterium with potential in microbe-assisted phytoremediation. Curr Microbiol 75:1231–1239. https://doi.org/10.1007/s00284-018-1515-z

    Article  CAS  PubMed  Google Scholar 

  59. Sun Y, Sun P, Xue J et al (2022) Arthrobacter wenxiniae sp. nov., a novel plant growth-promoting rhizobacteria species harbouring a carotenoids biosynthetic gene cluster. Antonie Van Leeuwenhoek. https://doi.org/10.1007/s10482-021-01701-9

  60. Patel S, Gupta RS (2020) A phylogenomic and comparative genomic framework for resolving the polyphyly of the genus Bacillus: proposal for six new genera of Bacillus species, Peribacillus gen. nov., Cytobacillus gen. nov., Mesobacillus gen. nov., Neobacillus gen. nov., Metabacillus gen. nov. and Alkalihalobacillus gen. nov. Int J Syst Evol Microbiol 70:406–438. https://doi.org/10.1099/ijsem.0.003775

    Article  CAS  PubMed  Google Scholar 

  61. Yadav S, Kaushik R, Saxena AK, Arora DK (2011) Diversity and phylogeny of plant growth-promoting bacilli from moderately acidic soil. J Basic Microbiol 51:98–106. https://doi.org/10.1002/jobm.201000098

    Article  CAS  PubMed  Google Scholar 

  62. Hernández-Pacheco CE, del Carmen Orozco-Mosqueda M, Flores A et al (2021) Tissue-specific diversity of bacterial endophytes in Mexican husk tomato plants (Physalis ixocarpa Brot. ex Horm.), and screening for their multiple plant growth-promoting activities. Curr Res Microb Sci 2:100028. https://doi.org/10.1016/j.crmicr.2021.100028

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Parks DH, Chuvochina M, Waite DW et al (2018) A standardized bacterial taxonomy based on genome phylogeny substantially revises the tree of life. Nat Biotechnol 36:996–1004. https://doi.org/10.1038/nbt.4229

    Article  CAS  PubMed  Google Scholar 

  64. Michel DC, Passos SR, Simões-Araujo JL et al (2017) Bradyrhizobium centrolobii and Bradyrhizobium macuxiense sp. nov. isolated from Centrolobium paraense grown in soil of Amazonia. Brazil Arch Microbiol 199:657–664. https://doi.org/10.1007/s00203-017-1340-y

    Article  CAS  PubMed  Google Scholar 

  65. Green PN, Ardley JK (2018) Review of the genus Methylobacterium and closely related organisms: a proposal that some Methylobacterium species be reclassified into a new genus, Methylorubrum gen. nov. Int J Syst Evol Microbiol 68:2727–2748. https://doi.org/10.1099/ijsem.0.002856

    Article  CAS  PubMed  Google Scholar 

  66. Grossi CEM, Fantino E, Serral F et al (2020) Methylobacterium sp. 2A is a plant growth-promoting Rhizobacteria that has the potential to improve potato crop yield under adverse conditions. Front. Plant Sci 11:71. https://doi.org/10.3389/fpls.2020.00071

    Article  Google Scholar 

  67. Jirakkakul J, Khoiri AN, Duangfoo T et al (2023) Insights into the genome of Methylobacterium sp. NMS14P, a novel bacterium for growth promotion of maize, chili, and sugarcane. PloS One 18(2):e0281505. https://doi.org/10.1371/journal.pone.0281505

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Pascual JA, Ros M, Martínez J et al (2020) Methylobacterium symbioticum sp. nov., a new species isolated from spores of Glomus iranicum var. tenuihypharum. Curr Microbiol 77:2031–2041. https://doi.org/10.1007/s00284-020-02101-4

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors expressed their gratitude to the technical support team of the Cluster at Universidade Federal de Viçosa.

Funding

This work was financially supported by the Conselho Nacional de Desenvolvimento Científico e Tecnológico-CNPq (Process APQ-02381-21), Coordenação de Aperfeiçoamento de Pessoal de Nível Superior/Programa de Excelência Acadêmica-Finance Code 001 (CAPES ProEx grant 23038.019105/2016-86) and Fundação de Amparo à Pesquisa do Estado de Minas Gerais—FAPEMIG (Process 402644/2021-2).

Author information

Authors and Affiliations

Authors

Contributions

OSG.: investigation, visualization, writing—original draft, and writing—review and editing; MFS.: conceptualization, funding acquisition, resources, supervision, validation, writing—review and editing.

Corresponding author

Correspondence to Mateus Ferreira Santana.

Ethics declarations

Competing Interests

The authors declare no competing interests.

Supplementary information

ESM 1

(DOCX 3899 kb)

ESM 2

(XLSX 409 kb)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gonçalves, O.S., Santana, M.F. Uncovering the Secrets of Slow-Growing Bacteria in Tropical Savanna Soil Through Isolation and Genomic Analysis. Microb Ecol 86, 2687–2702 (2023). https://doi.org/10.1007/s00248-023-02275-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00248-023-02275-x

Keywords

Navigation