Skip to main content
Log in

Bradyrhizobium centrolobii and Bradyrhizobium macuxiense sp. nov. isolated from Centrolobium paraense grown in soil of Amazonia, Brazil

  • Original Paper
  • Published:
Archives of Microbiology Aims and scope Submit manuscript

Abstract

Thirteen Gram-negative, aerobic, motile with polar flagella, rod-shaped bacteria were isolated from root nodules of Centrolobium paraense Tul. grown in soils from the Amazon region of Brazil. Growth of strains was observed at temperature range 20–36 °C (optimal 28 °C), pH ranges 5–11 (optimal 6.0–7.0), and 0.1–0.5%NaCl (optimal 0.1–0.3%). Analysis of 16S rRNA gene placed the strains into two groups within Bradyrhizobium. Closest neighbouring species (98.8%) for group I was B. neotropicale while for group II were 12 species with more than 99% of similarity. Multi-locus sequence analysis (MLSA) with dnaK, glnII, recA, and rpoB confirmed B. neotropicale BR 10247T as the closest type strain for the group I and B. elkanii USDA 76T and B. pachyrhizi PAC 48T for group II. Average Nucleotide Identity (ANI) differentiated group I from the B. neotropicale BR 10247T (79.6%) and group II from B. elkanii USDA 76T and B. pachyrhizi PAC 48T (88.1% and 87.9%, respectively). Fatty acid profiles [majority C16:0 and Summed feature 8 (18:1ω6c/18:1ω7c) for both groups], DNA G + C content, and carbon compound utilization supported the placement of the novel strains in the genus Bradyrhizobium. Gene nodC and nifH of the new strains have in general low similarity with other Bradyrhizobium species. Both groups nodulated plants from the tribes Crotalarieae, Dalbergiae, Genisteae, and Phaseoleae. Based on the presented data, two novel species which the names Bradyrhizobium centrolobii and Bradyrhizobium macuxiense are proposed, with BR 10245T (=HAMBI 3597T) and BR 10303T (=HAMBI 3602T) as the respective-type strains.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Baraúna AC, da Silva K, Pereira GMD, Kaminski PE, Perin L, Zilli JE (2014) Diversity and nitrogen fixation efficiency or rhizobia isolated from nodules of Centrolobium paraense. Pesq. agropec. bras. 49: 296–305

    Article  Google Scholar 

  • Baraúna AC, Rouws LFM, Simoes-Araújo JL, Junior FBR, Iannetta PPM, Maluk MM, Goi SR, Reis VM, James EK & Zilli JE (2016) Rhizobium altiplani sp. nov. isolated from effective nodules on Mimosa pudica growing in untypically alkaline soil in Central Brazil. Int J Syst Evol Microbiol doi:10.1099/ijsem.0.001322

    PubMed  Google Scholar 

  • Dahmer N, Wittman MTS, Kaminski PE (2009) Chromosome number and karyotype of the endangered Amazonian woody Centrolobium paraense Tul. species. Crop Breeding and Applied. Biotechnology 9:382–385

    Google Scholar 

  • Delamuta JRM, Ribeiro RA, Simoes-Araújo JL, Rouws LFM, Zilli JE, Parma MM, Melo IS, Hungria M (2016) Bradyrhizobium stylosanthis sp. nov., comprising nitrogen-fixing symbionts isolated from nodules of the tropical forage legume Stylosanthes spp. Int J Syst Evol Microbiol 66:3078–3087

    Article  PubMed  Google Scholar 

  • Felsenstein J (1981) Evolutionary trees from DNA sequences: a maximum likelihood approach. J Mol Evol 17:368–376

    Article  CAS  PubMed  Google Scholar 

  • Gouy M, Guindon S, Gascuel O (2010) SeaView version 4: a multiplatform graphical user interface for sequence alignment and phylogenetic tree building. Mol Biol Evol 27:221–224

    Article  CAS  PubMed  Google Scholar 

  • Helene LCF (2015) Diversidade entre estirpes do gênero Bradyrhizobium avaliada por Multilocus Sequence Analysis (MLSA) e Análise Polifásica. Dissertation, Universidade Estadual de Londrina

  • Jukes TH, Cantor CR (1969) Evolution of protein molecules. In: Munro HN (ed) Mammalian protein metabolism. Academic, New York, 21–123

    Chapter  Google Scholar 

  • Kumar S, Stecher G, Tamura K (2016) Mega 7: molecular evolutionary genetics analysis version 7.0 for bigger datasets. Mol Biol Evol 33:1870–1874

    Article  CAS  PubMed  Google Scholar 

  • Kuykendall LD, Saxena B, Devine TE, Udell SE (1992) Genetic diversity in Bradyrhizobium japonicum Jordan 1982 and a proposal for Bradyrhizobium elkanii sp. nov. Can J Microbiol 38:501–505

    Article  CAS  Google Scholar 

  • Martens M, Dawyndt P, Coopman R, Gillis M, De Vos P, Willems A (2008) Advantages of multilocus sequence analysis fortaxonomic studies: a case study using 10 housekeeping genes in the genus Ensifer (including former Sinorhizobium). Int J Syst Evol Microbiol 58:200–214

    Article  CAS  PubMed  Google Scholar 

  • Menna P, Barcellos FG, Hungria M (2009) Phylogeny and taxonomy of a diverse collection of Bradyrhizobium strains based on multilocus sequence analysis of the 16S rRNA gene, ITS region and glnII, recA, atpD and dnaK genes. Int J Syst Evol Microbiol 59:2934–2950

    Article  CAS  PubMed  Google Scholar 

  • Pedreira JL (2010) Uso e manejo indígena de pau-rainha (Centrolobium paraense Tul. – Fabaceae) na terra indıgena Araça, RR. Dissertation, Instituto Nacional de Pesquisas da Amazônia

  • Peix A, Ramírez-Bahena MH, Velázquez E, Bedmar EJ (2015) Bacterial association with legumes. Crit Rev Plant Sci 34:17–42

    Article  Google Scholar 

  • Pirie MD, Klitgaard BB, Pennington RT (2009) Revision and biogeography of Centrolobium (Leguminosae–Papilionoideae). Syst Bot 34:345–359

    Article  Google Scholar 

  • Poly F, Monrozier LJ, Bally R (2001) Improvement in the RFLP procedure for studying the diversity of nifH genes in communities of nitrogen fixers in soil. Res Microbiol 152:95–103

    Article  CAS  PubMed  Google Scholar 

  • Radl V, Simoes-Araujo JL, Leite J, Passos SR, Martins LMV, Xavier GR, Rumjanek NG, Baldani JI, Zilli JE (2014) Microvirga vignae sp. nov., a root nodule symbiotic bacterium isolated from cowpea grown in semi-arid Brazil. Int J Syst Evol Microbiol 64:725–730

    Article  PubMed  Google Scholar 

  • Ramírez-Bahena, MH, Peix A, Rivas R, Camacho M, Rodrígues-Navarro DN, Mateos PF, Martínez-Molina E, Willems A, Velázques E (2009) Bradyrhizobium pachyrhizi sp. nov. and Bradyrhizobium jicamae sp nov., isolated from effective nodules of Pachyrhizus erosus. Int J Syst Evol Microbiol 59: 1929–1934

    Article  PubMed  Google Scholar 

  • Richter M, Rossello-Mora R (2009) Shifting the genomic gold standard for the prokaryotic species definition. Proc Natl Acad Sci USA 106:19126–19131

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rivas R, Martens M, de Lajudie P, Willems A (2009) Multilocus sequence analysis of the genus Bradyrhizobium. Syst Appl Microbiol 32:101–110

    Article  CAS  PubMed  Google Scholar 

  • Saitou N, Nei M (1987) The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 4:406–425

    CAS  PubMed  Google Scholar 

  • Sarita S, Sharma PK, Priefer UB, Prell J (2005) Direct amplification of rhizobial nodC sequences from soil total DNA and comparison to nodC diversity of root nodule isolates. FEMS Microbiol Ecol 54:1–11

    Article  CAS  PubMed  Google Scholar 

  • Tighe SW, de Lajudie P, Dipietro K, Lindstrom K, Nick G, Jarvis BDW (2000) Analysis of cellular fatty acids and phenotypic relationships of Agrobacterium, Bradyrhizobium, Mesorhizobium, Rhizobium and Sinorhizobium species using the Sherlock Microbial Identification System. Int J Syst Evol Microbiol 50:787–801

    Article  CAS  PubMed  Google Scholar 

  • Versalovic J, Schneider M, de Bruijn FJ, Lupski JR (1994) Genomic fingerprinting of bacteria using repetitive sequence-based polymerase chain reaction. Methods. Mol Cell Biol 5:25–40

    CAS  Google Scholar 

  • Vinuesa P, Silva C, Werner D, Martínez-Romero E (2005) Population genetics and phylogenetic inference in bacterial molecular systematics: the roles of migration and recombination in Bradyrhizobium species cohesion and delineation. Mol Phylogenet Evol 34:29–54

    Article  CAS  PubMed  Google Scholar 

  • Zilli JE, Baraúna AC, da Silva K, de Meyer SE, Farias ENC, Kaminsky PE, da Costa IB, Ardley JK, Willens A, Camacho NN, Dourado FS, O´Hara G (2014) Bradyrhizobium neotropicale sp. nov., isolated from effective nodules of Centrolobium paraense. Int J Syst Evol Mictobiol 64:3950–3957

    Article  Google Scholar 

Download references

Acknowledgements

The authors would like to thank Rosa Pitard, Fernanda Dourado, Natalia Camacho, and Karine Freitas (Embrapa Agrobiologia) for technical assistance. Embrapa, CNPq, and FAPERJ financially supported this study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jerri E. Zilli.

Additional information

Communicated by Erko Stackebrandt.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 511 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Michel, D.C., Passos, S.R., Simões-Araujo, J.L. et al. Bradyrhizobium centrolobii and Bradyrhizobium macuxiense sp. nov. isolated from Centrolobium paraense grown in soil of Amazonia, Brazil. Arch Microbiol 199, 657–664 (2017). https://doi.org/10.1007/s00203-017-1340-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00203-017-1340-y

Keywords

Navigation