Skip to main content
Log in

New Insights for the Renewed Phytoplankton-Bacteria Coupling Concept: the Role of the Trophic Web

  • Microbiology of Aquatic Systems
  • Published:
Microbial Ecology Aims and scope Submit manuscript

Abstract

It is widely accepted that in many aquatic ecosystems bacterioplankton is dependent on and regulated by organic carbon supplied by phytoplankton, leading to coupled algae-bacteria relationship. In this study, an in-depth analysis of this relationship has been carried out by combining two approaches: (i) a correlation analyses between heterotrophic bacterial production (BP) vs. primary production (PP) or algal excretion of organic carbon (EOC), (ii) the balance between bacterial carbon demands (BCD) and the supply of C as EOC, measured as BCD:EOC ratio. During the study period (2013–2016), the algae-bacteria relationship was constantly changing from a coupling in 2013, uncoupling in 2014 and 2015, and an incipient return to coupling (in 2016). Our results show that top-down control (bacterivory) by algal mixotrophy acts as a decoupling force since it provides a fresh C source different to algal EOC to satisfy bacterial carbon demands. Notably, a relationship between the BCD:EOC ratio and the ecosystem metabolic balance (Primary production (PP): respiration (R)) was found, suggesting that PP:R may be a good predictor of the algae-bacteria coupling. This analysis, including the comparison between basal and potential ecosystem metabolic balance, can be a tool to improve knowledge on the interaction between both biotics compartments, which the traditional analyses on coupling may not capture.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data Availability

The datasets generated during and/or analysed during the current study are available from the corresponding author on reasonable request.

References

  1. Cole JJ (1982) Interactions Between bacteria and algae in aquatic ecosystems. Annu Rev Ecol Syst 13:291–314. https://doi.org/10.1146/annurev.es.13.110182.001451

    Article  Google Scholar 

  2. Kirchman D (1990) Limitation of bacterial growth by dissolved organic matter in the subarctic Pacific. Mar Ecol Prog Ser 62:47–54. https://doi.org/10.3354/meps062047

    Article  CAS  Google Scholar 

  3. Mühlenbruch M, Grossart H-P, Eigemann F, Voss M (2018) Mini-review: phytoplankton-derived polysaccharides in the marine environment and their interactions with heterotrophic bacteria. Environ Microbiol 20:2671–2685. https://doi.org/10.1111/1462-2920.14302

    Article  CAS  PubMed  Google Scholar 

  4. Bird DF, Kalff J (1984) Empirical relationships between bacterial abundance and chlorophyll concentration in fresh and marine waters. Can J Fish Aquat Sci 41:1015–1023. https://doi.org/10.1139/f84-118

    Article  Google Scholar 

  5. Cole JJ, Findlay S, Pace ML (1988) Bacterial production in fresh and saltwater ecosystems: a cross-system overview. Mar Ecol Prog Ser Oldendorf 43:1–10

    Article  Google Scholar 

  6. Kritzberg ES, Cole JJ, Pace MM, Granéli W (2005) Does autochthonous primary production drive variability in bacterial metabolism and growth efficiency in lakes dominated by terrestrial C inputs? Aquat Microb Ecol 38:103–111. https://doi.org/10.3354/ame038103

    Article  Google Scholar 

  7. Kritzberg ES, Cole JJ, Pace MM, Granéli W (2006) Bacterial growth on allochthonous carbon in humic and nutrient-enriched lakes: results from whole-lake 13C addition experiments. Ecosystems 9:489–499. https://doi.org/10.1007/s10021-005-0115-5

    Article  CAS  Google Scholar 

  8. Carrillo P, Medina-Sánchez JM, Durán C et al (2015) Synergistic effects of UVR and simulated stratification on commensalistic phytoplankton–bacteria relationship in two optically contrasting oligotrophic Mediterranean lakes. Biogeosciences 12:697–712. https://doi.org/10.5194/bg-12-697-2015

    Article  Google Scholar 

  9. Morán XAG, Estrada M, Gasol JM, Pedrós-Alió C (2002) Dissolved primary production and the strength of phytoplankton– bacterioplankton coupling in contrasting marine regions. Microb Ecol 44:217–223. https://doi.org/10.1007/s00248-002-1026-z

    Article  CAS  PubMed  Google Scholar 

  10. Durán-Romero C, Medina-Sánchez JM, Carrillo P (2020) Uncoupled phytoplankton-bacterioplankton relationship by multiple drivers interacting at different temporal scales in a high-mountain Mediterranean lake. Sci Rep 10:350. https://doi.org/10.1038/s41598-019-57269-y

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Medina-Sánchez JM, Carrillo P, Delgado-Molina JA et al (2010) Patterns of resource limitation of bacteria along a trophic gradient in Mediterranean inland waters. FEMS Microbiol Ecol 74:554–565. https://doi.org/10.1111/j.1574-6941.2010.00969.x

    Article  CAS  PubMed  Google Scholar 

  12. Durán C, Medina-Sánchez JM, Herrera G, Carrillo P (2016) Changes in the phytoplankton-bacteria coupling triggered by joint action of UVR, nutrients, and warming in Mediterranean high-mountain lakes. Limnol Oceanogr 61:413–429. https://doi.org/10.1002/lno.10204

    Article  Google Scholar 

  13. Thingstad TF, Bellerby RGJ, Bratbak G et al (2008) Counterintuitive carbon-to-nutrient coupling in an Arctic pelagic ecosystem. Nature 455:387–390. https://doi.org/10.1038/nature07235

    Article  CAS  PubMed  Google Scholar 

  14. Berggren M, Laudon H, Jonsson A, Jansson M (2010) Nutrient constraints on metabolism affect the temperature regulation of aquatic bacterial growth efficiency. Microb Ecol 60:894–902. https://doi.org/10.1007/s00248-010-9751-1

    Article  CAS  PubMed  Google Scholar 

  15. Freitas R, Vieira HH, de Moraes GP et al (2018) Productivity and rainfall drive bacterial metabolism in tropical cascading reservoirs. Hydrobiologia 809:233–246. https://doi.org/10.1007/s10750-017-3472-0

    Article  CAS  Google Scholar 

  16. Sarmento H, Morana C, Gasol JM (2016) Bacterioplankton niche partitioning in the use of phytoplankton-derived dissolved organic carbon: quantity is more important than quality. ISME J 10:2582–2592. https://doi.org/10.1038/ismej.2016.66

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Scofield V, Jacques SMS, Guimarães JRD, Farjalla VF (2015) Potential changes in bacterial metabolism associated with increased water temperature and nutrient inputs in tropical humic lagoons. Front Microbiol 6

  18. Medina-Sánchez JM, Villar-Argaiz M, Carrillo P (2004) Neither with nor without you: a complex algal control on bacterioplankton in a high mountain lake. Limnol Oceanogr 49:1722–1733. https://doi.org/10.4319/lo.2004.49.5.1722

    Article  Google Scholar 

  19. Onandia G, Miracle MR, Vicente E (2014) Primary production under hypertrophic conditions and its relationship with bacterial production. Aquat Ecol 48:447–463. https://doi.org/10.1007/s10452-014-9497-9

    Article  CAS  Google Scholar 

  20. Mitra A, Flynn KJ, Burkholder JM et al (2014) The role of mixotrophic protists in the biological carbon pump. Biogeosciences 11:995–1005. https://doi.org/10.5194/bg-11-995-2014

    Article  CAS  Google Scholar 

  21. Duarte CM, Prairie YT (2005) Prevalence of heterotrophy and atmospheric CO2 emissions from aquatic ecosystems. Ecosystems 8:862–870. https://doi.org/10.1007/s10021-005-0177-4

    Article  CAS  Google Scholar 

  22. Scott JT, Doyle RD (2006) Coupled photosynthesis and heterotrophic bacterial biomass production in a nutrient-limited wetland periphyton mat. Aquat Microb Ecol 45:69–77. https://doi.org/10.3354/ame045069

    Article  Google Scholar 

  23. Carrillo P, Medina-Sánchez JM, Villar-Argaiz M (2002) The interaction of phytoplankton and bacteria in a high mountain lake: Importance of the spectral composition of solar radiation. Limnol Oceanogr 47:1294–1306. https://doi.org/10.4319/lo.2002.47.5.1294

    Article  Google Scholar 

  24. González-Benítez N, García-Corral LS, Morán XAG et al (2019) Drivers of microbial carbon fluxes variability in two oligotrophic mediterranean coastal systems. Sci Rep 9:17669. https://doi.org/10.1038/s41598-019-53650-z

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Morán XAG, Gasol JM, Pedrós-Alió C, Estrada M (2002) Partitioning of phytoplanktonic organic carbon production and bacterial production along a coastal-offshore gradient in the NE Atlantic during different hydrographic regimes. Aquat Microb Ecol 29:239–252. https://doi.org/10.3354/ame029239

    Article  Google Scholar 

  26. Fouilland E, Mostajir B (2010) Revisited phytoplanktonic carbon dependency of heterotrophic bacteria in freshwaters, transitional, coastal and oceanic waters. FEMS Microbiol Ecol 73:419–429. https://doi.org/10.1111/j.1574-6941.2010.00896.x

    Article  CAS  PubMed  Google Scholar 

  27. Morán XAG, Alonso-Sáez L (2011) Independence of bacteria on phytoplankton? Insufficient support for Fouilland & Mostajir’s (2010) suggested new concept. FEMS Microbiol Ecol 78:203–205. https://doi.org/10.1111/j.1574-6941.2011.01167.x

    Article  CAS  PubMed  Google Scholar 

  28. Fouilland E, Mostajir B (2011) Complementary support for the new ecological concept of ‘bacterial independence on contemporary phytoplankton production’ in oceanic waters. FEMS Microbiol Ecol 78:206–209. https://doi.org/10.1111/j.1574-6941.2011.01170.x

    Article  CAS  Google Scholar 

  29. Fouilland E, Tolosa I, Bonnet D et al (2014) Bacterial carbon dependence on freshly produced phytoplankton exudates under different nutrient availability and grazing pressure conditions in coastal marine waters. FEMS Microbiol Ecol 87:757–769. https://doi.org/10.1111/1574-6941.12262

    Article  CAS  PubMed  Google Scholar 

  30. Goni-Urriza M, Moussard H, Lafabrie C et al (2018) Consequences of contamination on the interactions between phytoplankton and bacterioplankton. Chemosphere 195:212–222. https://doi.org/10.1016/j.chemosphere.2017.12.053

    Article  CAS  Google Scholar 

  31. Hornick T, Bach LT, Crawfurd KJ et al (2017) Ocean acidification impacts bacteria–phytoplankton coupling at low-nutrient conditions. Biogeosciences 14:1–15. https://doi.org/10.5194/bg-14-1-2017

    Article  CAS  Google Scholar 

  32. Kim B, An S-U, Kim T-H, Hyun J-H (2020) Uncoupling between heterotrophic bacteria and phytoplankton and changes in trophic balance associated with warming of seawater in Gyeonggi Bay, Yellow Sea. Estuaries Coasts 43:535–546. https://doi.org/10.1007/s12237-019-00606-1

    Article  CAS  Google Scholar 

  33. Prieto A, Barber-Lluch E, Hernández-Ruiz M et al (2016) Assessing the role of phytoplankton–bacterioplankton coupling in the response of microbial plankton to nutrient additions. J Plankton Res 38:55–63. https://doi.org/10.1093/plankt/fbv101

    Article  CAS  Google Scholar 

  34. Pringault O, Bouvy M, Carre C et al (2020) Impacts of chemical contamination on bacterio-phytoplankton coupling. Chemosphere 257:127165. https://doi.org/10.1016/j.chemosphere.2020.127165

    Article  CAS  PubMed  Google Scholar 

  35. Catalán J, Camarero L, Felip M et al (2006) High mountain lakes : extreme habitats and witnesses of environmental changes. Limnética 25:551–584

    Article  Google Scholar 

  36. Parker BR, Vinebrooke RD, Schindler DW (2008) Recent climate extremes alter alpine lake ecosystems. Proc Natl Acad Sci 105:12927–12931. https://doi.org/10.1073/pnas.0806481105

    Article  PubMed  PubMed Central  Google Scholar 

  37. Carrillo P, Medina-Sánchez JM, Villar-Argaiz M et al (2006) Complex interactions in microbial food webs : stoichiometric and functional approaches. Limnética 25:189–204

    Article  Google Scholar 

  38. Mladenov N, Sommaruga R, Morales-Baquero R et al (2011) Dust inputs and bacteria influence dissolved organic matter in clear alpine lakes. Nat Commun 2:405. https://doi.org/10.1038/ncomms1411

    Article  CAS  PubMed  Google Scholar 

  39. Medina-Sánchez JM, Villar-Argaiz M, Carrillo P (2002) Modulation of the bacterial response to spectral solar radiation by algae and limiting nutrients. Freshw Biol 47:2191–2204. https://doi.org/10.1046/j.1365-2427.2002.00969.x

    Article  Google Scholar 

  40. Medina-Sánchez JM, Cabrerizo MJ, González-Olalla JM et al (2022) High Mountain lakes as remote sensors of global change. In: Zamora R, Oliva M (eds) The Landscape of the Sierra Nevada: A Unique Laboratory of Global Processes in Spain. Springer International Publishing, Cham, pp 261–278

    Chapter  Google Scholar 

  41. Carrillo P, Delgado-Molina JA, Medina-Sánchez JM et al (2008) Phosphorus inputs unmask negative effects of ultraviolet radiation on algae in a high mountain lake. Glob Change Biol 14:423–439. https://doi.org/10.1111/j.1365-2486.2007.01496.x

    Article  Google Scholar 

  42. Korbee N, Carrillo P, Mata MT et al (2012) Effects of ultraviolet radiation and nutrients on the structure-function of phytoplankton in a high mountain lake. Photochem Photobiol Sci 11:1087–1098. https://doi.org/10.1039/c2pp05336e

    Article  CAS  PubMed  Google Scholar 

  43. Adrian R, O’Reilly CM, Zagarese H et al (2009) Lakes as sentinels of climate change. Limnol Oceanogr 54:2283–2297. https://doi.org/10.4319/lo.2009.54.6_part_2.2283

    Article  PubMed  PubMed Central  Google Scholar 

  44. Williamson CE, Dodds W, Kratz TK, Palmer MA (2008) Lakes and streams as sentinels of environmental change in terrestrial and atmospheric processes. Front Ecol Environ 6:247–254. https://doi.org/10.1890/070140

    Article  Google Scholar 

  45. Psenner R (1999) Living in a dusty world: airborne dust as a key factor for alpine lakes. Water Air Soil Pollut 112:217–227. https://doi.org/10.1023/A:1005082832499

    Article  CAS  Google Scholar 

  46. Garcia-Herrera RF, Lionello P, Ulbrich U (2014) Preface: Understanding dynamics and current developments of climate extremes in the Mediterranean region. Nat Hazard 14:309–316. https://doi.org/10.5194/nhess-14-309-2014

    Article  Google Scholar 

  47. Villar-Argaiz M, Medina-Sánchez JM, Cruz-Pizarro L, Carrillo P (2001) Inter- and intra-annual variability in the phytoplankton community of a high mountain lake: the influence of external (atmospheric) and internal (recycled) sources of phosphorus. Freshw Biol 46:1017–1034. https://doi.org/10.1046/j.1365-2427.2001.00734.x

    Article  CAS  Google Scholar 

  48. Carrillo P, Reche I, Cruz-Pizarro L (1996) Intraspecific stoichiometric variability and the ratio of nitrogen to phosphorus resupplied by zooplankton. Freshw Biol 36:363–374. https://doi.org/10.1046/j.1365-2427.1996.00091.x

    Article  CAS  Google Scholar 

  49. Medina-Sánchez JM, Villar-Argaiz M, Sánchez-Castillo P et al (1999) Structure changes in a planktonic food web: biotic and abiotic controls. J Limnol 58:213. https://doi.org/10.4081/jlimnol.1999.213

    Article  Google Scholar 

  50. Villar-Argaiz M, Medina-Sánchez JM, Carrillo P (2002) Microbial plankton response to contrasting climatic conditions: insights from community structure, productivity and fraction stoichiometry. Aquat Microb Ecol 29:253–266. https://doi.org/10.3354/ame029253

    Article  Google Scholar 

  51. Rice EW, Baird RB, Eaton AA (2017) Standard methods for the examination of water and wastewater, 23rd edn. American Public Health Association, Washington, DC

    Google Scholar 

  52. Nielsen ES (1951) Measurement of the production of organic matter in the sea by means of carbon-14. Nature 167:684–685. https://doi.org/10.1038/167684b0

    Article  CAS  PubMed  Google Scholar 

  53. Lignell R (1992) Problems in filtration fractionation of 14C primary productivity samples. Limnol Oceanogr 37:172–178. https://doi.org/10.4319/lo.1992.37.1.0172

    Article  CAS  Google Scholar 

  54. Smith DC, Azam F (1992) A simple, economical method for measuring bacterial protein synthesis rates in seawater using 3H-leucine. Mar Microb Food Webs 6:107–114

    Google Scholar 

  55. Fuhrman JA, Azam F (1982) Thymidine incorporation as a measure of heterotrophic bacterioplankton production in marine surface waters: evaluation and field results. Mar Biol 66:109–120. https://doi.org/10.1007/BF00397184

    Article  Google Scholar 

  56. Bell RT (1993) Estimating Production of heterotrophic bacterioplankton via Incorporation of tritiated thymidine. In: Handbook of methods in aquatic microbial ecology, 1st Edition. CRC Press, pp 495–503

  57. Lee S, Fuhrman JA (1987) Relationships between biovolume and biomass of naturally derived marine bacterioplankton. Appl Environ Microbiol 53:1298–1303. https://doi.org/10.1128/aem.53.6.1298-1303.1987

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. González-Olalla JM, Medina-Sánchez JM, Lozano IL et al (2018) Climate-driven shifts in algal-bacterial interaction of high-mountain lakes in two years spanning a decade. Sci Rep 8:10278. https://doi.org/10.1038/s41598-018-28543-2

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Morales-Baquero R, Pulido-Villena E, Reche I (2006) Atmospheric inputs of phosphorus and nitrogen to the southwest Mediterranean region: Biogeochemical responses of high mountain lakes. Limnol Oceanogr 51:830–837. https://doi.org/10.4319/lo.2006.51.2.0830

    Article  CAS  Google Scholar 

  60. Morales-Baquero R, Pérez-Martínez C (2016) Saharan versus local influence on atmospheric aerosol deposition in the southern Iberian Peninsula: significance for N and P inputs. Glob Biogeochem Cycles 30:501–513. https://doi.org/10.1002/2015GB005254

    Article  CAS  Google Scholar 

  61. Dorado-García I, Medina-Sánchez JM, Herrera G et al (2014) Quantification of carbon and phosphorus co-limitation in bacterioplankton: new insights on an old topic. PLoS One 9:e99288. https://doi.org/10.1371/journal.pone.0099288

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. del Giorgio PA, Cole JJ (1998) Bacterial growth efficiency in natural aquatic systems. Annu Rev Ecol Syst 29:503–541

    Article  Google Scholar 

  63. Medina-Sánchez JM, Argaiz MV, Carrillo P (2006) Solar radiation-nutrient interaction enhances the resource and predation algal control on bacterioplankton: a short-term experimental study. Limnol Oceanogr 51:913–924. https://doi.org/10.4319/lo.2006.51.2.0913

    Article  Google Scholar 

  64. Kamiya E, Izumiyama S, Nishimura M et al (2007) Effects of fixation and storage on flow cytometric analysis of marine bacteria. J Oceanogr 63:101–112. https://doi.org/10.1007/s10872-007-0008-7

    Article  Google Scholar 

  65. Zubkov MV, Burkill PH, Topping JN (2007) Flow cytometric enumeration of DNA-stained oceanic planktonic protists. J Plankton Res 29:79–86. https://doi.org/10.1093/plankt/fbl059

    Article  CAS  Google Scholar 

  66. Gasol JM, del Giorgio PA (2000) Using flow cytometry for counting natural planktonic bacteria and understanding the structure of planktonic bacterial communities. Sci Mar 64:197–224. https://doi.org/10.3989/scimar.2000.64n2197

    Article  Google Scholar 

  67. Zubkov MV, Burkill PH (2006) Syringe pumped high speed flow cytometry of oceanic phytoplankton. Cytometry A 69A:1010–1019. https://doi.org/10.1002/cyto.a.20332

    Article  Google Scholar 

  68. Gattuso J-P, Peduzzi S, Pizay M-D, Tonolla M (2002) Changes in freshwater bacterial community composition during measurements of microbial and community respiration. J Plankton Res 24:1197–1206. https://doi.org/10.1093/plankt/24.11.1197

    Article  CAS  Google Scholar 

  69. Guillemette F, Leigh McCallister S, del Giorgio PA (2016) Selective consumption and metabolic allocation of terrestrial and algal carbon determine allochthony in lake bacteria. ISME J 10:1373–1382. https://doi.org/10.1038/ismej.2015.215

    Article  CAS  PubMed  Google Scholar 

  70. Reche I, Pulido-Villena E, Conde-Porcuna JM, Carrillo P (2001) Photoreactivity of dissolved organic matter from high-mountain lakes of Sierra Nevada, Spain. Arct Antarct Alp Res 33:426–434. https://doi.org/10.1080/15230430.2001.12003451

    Article  Google Scholar 

  71. Delgado-Molina JA (2009) Efectos interactivos de radiación uv y pulsos de nutrientes sobre la red trófica microbiana: aproximación estructural, estequiométrica y funcional. Http://purl.org/dc/dcmitype/Text, Universidad de Granada

  72. Reche I, Pugnetti A, Cruz-Pizzaro L, Carrillo P (1996) Relationship between bacteria and phytoplankton in a high-mountain lake: importance of the organic carbon released by pelagic algae for bacterioplankton. Ergebnisse der Limnologie 31–38

  73. Morán XAG, Ducklow HW, Erickson M (2013) Carbon fluxes through estuarine bacteria reflect coupling with phytoplankton. Mar Ecol Prog Ser 489:75–85. https://doi.org/10.3354/meps10428

    Article  CAS  Google Scholar 

  74. Billen G, Servais P, Becquevort S (1990) Dynamics of bacterioplankton in oligotrophic and eutrophic aquatic environments: bottom-up or top-down control? Hydrobiologia 207:37–42. https://doi.org/10.1007/BF00041438

    Article  Google Scholar 

  75. Corno G, Jürgens K (2008) Structural and functional patterns of bacterial communities in response to protist predation along an experimental productivity gradient. Environ Microbiol 10:2857–2871. https://doi.org/10.1111/j.1462-2920.2008.01713.x

    Article  PubMed  Google Scholar 

  76. Pace ML, Cole JJ (1994) Comparative and experimental approaches to top-down and bottom-up regulation of bacteria. Microb Ecol 28:181–193. https://doi.org/10.1007/BF00166807

    Article  CAS  PubMed  Google Scholar 

  77. Bonilla-Findji O, Malits A, Lefèvre D et al (2008) Viral effects on bacterial respiration, production and growth efficiency: consistent trends in the Southern Ocean and the Mediterranean Sea. Deep Sea Res Part II Top Stud Oceanogr 55:790–800. https://doi.org/10.1016/j.dsr2.2007.12.004

    Article  Google Scholar 

  78. Teira E, Hernando-Morales V, Fernández A et al (2015) Local differences in phytoplankton-bacterioplankton coupling in the coastal upwelling off Galicia (NW Spain). Mar Ecol Prog Ser 528:53–69. https://doi.org/10.3354/meps11228

    Article  Google Scholar 

  79. Bird DF, Karl DM (1999) Uncoupling of bacteria and phytoplankton during the austral spring bloom in Gerlache Strait, Antarctic Peninsula. Aquat Microb Ecol 19:13–27. https://doi.org/10.3354/ame019013

    Article  Google Scholar 

  80. Krishnan KP, Sinha RK, Nair S et al (2015) Carbon demand, utilization, and metabolic diversity of bacterioplankton in the frontal regimes of the Indian sector of the Southern Ocean. Ann Microbiol 65:1027–1036. https://doi.org/10.1007/s13213-014-0948-2

    Article  CAS  Google Scholar 

  81. Medina-Sánchez JM, Delgado-Molina JA, Bratbak G et al (2013) Maximum in the middle: nonlinear response of microbial plankton to ultraviolet radiation and phosphorus. PLoS One 8:e60223. https://doi.org/10.1371/journal.pone.0060223

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. López-Sandoval DC, Fernández A, Marañón E (2011) Dissolved and particulate primary production along a longitudinal gradient in the Mediterranean Sea. Biogeosciences 8:815–825. https://doi.org/10.5194/bg-8-815-2011

    Article  CAS  Google Scholar 

  83. Nagata T (2000) Production mechanisms of dissolved organic matter. Wiley Series in Ecological and Applied Microbiology

  84. Wilhelm SW, Suttle CA (1999) Viruses and nutrient cycles in the sea: viruses play critical roles in the structure and function of aquatic food webs. Bioscience 49:781–788. https://doi.org/10.2307/1313569

    Article  Google Scholar 

  85. López-Urrutia Á, Martin ES, Harris RP, Irigoien X (2006) Scaling the metabolic balance of the oceans. PNAS 103:8739–8744. https://doi.org/10.1073/pnas.0601137103

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Woodward FI (2007) Global primary production. Curr Biol 17:R269–R273. https://doi.org/10.1016/j.cub.2007.01.054

    Article  CAS  PubMed  Google Scholar 

  87. Yvon-Durocher G, Jones JI, Trimmer M et al (2010) Warming alters the metabolic balance of ecosystems. Philos Trans R Soc B: Biol Sci 365:2117–2126. https://doi.org/10.1098/rstb.2010.0038

    Article  Google Scholar 

  88. Mamouri R-E, Ansmann A, Nisantzi A et al (2016) Extreme dust storm over the eastern Mediterranean in September 2015: satellite, lidar, and surface observations in the Cyprus region. Atmos Chem Phys 16:13711–13724. https://doi.org/10.5194/acp-16-13711-2016

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We are grateful to Manuel Villar-Argaiz and Javier Carretero Rodríguez for their support. We thank the Sierra Nevada National Park for the permission for field work. We appreciate the criticism of two anonymous reviewers who greatly improved the manuscript.

Funding

This study was funded by the PID2020-118872RB-I00 (MICIN/AEI/10.13039/501100011033) and FEDER/Junta de Andalucía-Consejería de Transformación Económica, Industria, Conocimiento y Universidades/Proyecto (B-RNM-310-UGR20) projects. This research is also part of the project “Thematic Center on Mountain Ecosystem & Remote sensing, Deep learning-AI e-Services University of Granada-Sierra Nevada'' (LifeWatch-2019–10-UGR-01), which has been co-funded by the Ministry of Science and Innovation through the FEDER funds from the Spanish Pluriregional Operational Program 2014–2020 (POPE), LifeWatch-ERIC action line.

Author information

Authors and Affiliations

Authors

Contributions

All authors conceived and designed the study and collected the data. IL Lozano made the analyses. JM Medina-Sánchez acquired and administrated the financing funds. IL Lozano wrote the first draft of the manuscript, and all authors reviewed, edited, and approved the final manuscript.

Corresponding author

Correspondence to JM González-Olalla.

Ethics declarations

Competing interests

The authors declare no competing interests.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 632 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lozano, I., González-Olalla, J. & Medina-Sánchez, J. New Insights for the Renewed Phytoplankton-Bacteria Coupling Concept: the Role of the Trophic Web. Microb Ecol 86, 810–824 (2023). https://doi.org/10.1007/s00248-022-02159-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00248-022-02159-6

Keywords

Navigation