Skip to main content

Advertisement

Log in

Uncoupling between Heterotrophic Bacteria and Phytoplankton and Changes in Trophic Balance Associated with Warming of Seawater in Gyeonggi Bay, Yellow Sea

  • Special Issue: Climate Change and Anthropogenic Change around Korean Peninsula
  • Published:
Estuaries and Coasts Aims and scope Submit manuscript

Abstract

We investigated bacterial production (BP) and respiration (BR), in combination with phytoplankton and environmental parameters, to elucidate major carbon sources regulating heterotrophic bacterial metabolic activity and to evaluate variations of trophic balance associated with seawater warming in Gyeonggi Bay (GB). BP was not significantly correlated with primary production (PP, p > 0.05), but was significantly correlated with dissolved organic carbon (DOC, p < 0.01). Bacterial growth efficiency (BGE) was generally low (average 0.06) and decreased with increasing C/N ratio of DOM and concentration of humic-like fluorescent DOM (FDOMH). This uncoupling between bacteria and phytoplankton and low BGE suggests that bacterial growth largely relied on allochthonous input of DOC, but metabolic activities of the bacteria were suppressed by the low nutritional quality of the FDOMH. High BP/PP and BR/PP ratios (generally >1) implied that trophic balance of GB represented heterotrophic conditions, and ratios showed an inverse relationship with Chl-a concentrations. In comparison to the early 1990s, increasing water temperatures were associated with significant decreases in PP and Chl-a (by a factor of 9 and 2, respectively), whereas changes in BP were insignificant; these changes resulted in a 14-fold increase in the BP/PP ratio. Therefore, our results strongly imply that warming in GB intensified the carbon flux through the microbial loop, which may reduce the efficiency of energy transfer to higher trophic levels.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Alonso-Sáez, L., E. Vázquez-Domínguez, C. Cardelús, J. Pinhassi, M.M. Sala, I. Lekunberri, V. Balagúe, M. Vila-Costa, F. Unrein, R. Massana, R. Simó, and J.M. Gasol. 2008. Factors controlling the year-round variability in carbon flux through bacteria in a coastal marine system. Ecosystems 11 (3): 397–409.

    Article  CAS  Google Scholar 

  • Anderson, L.G., C. Haraldsson, and R. Lindegren. 1992. Gran linearization of potentiometric Winkler titration. Marine Chemistry 37 (3-4): 179–190.

    Article  CAS  Google Scholar 

  • Apple, J.K., P.A. del Giorgio, and W.M. Kemp. 2006. Temperature regulation of bacterial production, respiration, and growth efficiency in a temperate salt-marsh estuary. Aquatic Microbial Ecology 43: 243–254.

    Article  Google Scholar 

  • Azam, F.T. 1998. Microbial control of oceanic carbon flux: The plot thichkens. Science 280 (5364): 694–696.

    Article  CAS  Google Scholar 

  • Azam, F., T. Fenchel, J.G. Field, J.S. Gray, L.A. Meyer-Reil, and F. Thingstad. 1983. The ecological role of water-column microbes in the sea. Marine Ecology Progress Series 10: 257–263.

    Article  Google Scholar 

  • Båmstedt, U., and J. Wikner. 2016. Mixing depth and allochthonous dissolved organic carbon: Controlling factors of coastal trophic balance. Marine Ecology Progress Series 561: 17–29.

    Article  CAS  Google Scholar 

  • Barrón, C., and C.M. Duarte. 2015. Dissolved organic carbon pools and export from the coastal ocean. Global Biogeochemical Cycles 29 (10): 1725–1738.

    Article  CAS  Google Scholar 

  • Behrenfeld, M.J., R.T. O’Malley, D.A. Siegel, C.R. McClain, J.L. Sarmiento, G.C. Feldman, A.J. Milligan, P.G. Falkowski, R.M. Letelier, and E.S. Boss. 2006. Climate-driven trends in contemporary ocean productivity. Nature 444 (7120): 752–755.

    Article  CAS  Google Scholar 

  • Belkin, I.M. 2009. Rapid warming of large marine ecosystems. Progress in Oceanography 81 (1-4): 207–213.

    Article  Google Scholar 

  • Blanchard, J.L., S. Jennings, R. Holmes, J. Harle, G. Merino, J.I. Allen, J. Holt, N.K. Dulvy, and M. Barange. 2012. Potential consequences of climate change for primary production and fish production in large marine ecosystems. Philosophical Transactions of the Royal Society B 367 (1605): 2979–2989.

    Article  Google Scholar 

  • Canuel, E.A., S.S. Cammer, H.A. McIntosh, and C.R. Pondell. 2012. Climate change impacts on the organic carbon cycle at the land-ocean interface. Annual Review of Earth and Planetary Sciences 40 (1): 685–711.

    Article  CAS  Google Scholar 

  • Carlson, C.A., and D.A. Hansell. 2015. DOM sources, sinks, reactivity, and budgets. In Biogeochemistry of marine dissolved organic matter, ed. D.A. Hansell and C.A. Carlson, 2nd ed., 65–126. Amsterdam: Elsevier.

    Chapter  Google Scholar 

  • Cauwet, G. 2002. DOM in coastal zone. In Biogeochemistry of marine dissolved organic matter, ed. D.A. Hansell and C.A. Carlson, 579–609. San Diego: Academic.

    Chapter  Google Scholar 

  • Chassot, E., S. Bonhommeau, N.K. Dulvy, F. Mélin, R. Waton, D. Gascuel, and O. Le Pape. 2010. Global marine primary production constraints fisheries catches. Ecology Letters 13 (4): 495–505.

    Article  Google Scholar 

  • Cho, B.C., S.K. Yeon, and J.K. Choi. 1994. Spatial and temporal characteristics of distributions of bacteria in the Mideast part of the Yellow Sea. The Journal of the Oceanological Society of Korea 29: 145–151.

    Google Scholar 

  • Cho, B.C., M.G. Park, J.H. Shim, and D.H. Choi. 2001. Sea-surface temperature and f-ratio explain large variability in the ratio of bacterial production to primary production in the yellow sea. Marine Ecology Progress Series 216: 31–41.

    Article  CAS  Google Scholar 

  • Choi, J.K., and J.H. Shim. 1986. The ecological study of phytoplankton in Kyeonggi Bay, Yellow Sea I. Environmental Characteristics. The Journal of the Oceanological Society of Korea 21: 56–71.

    Google Scholar 

  • Coble, P.G. 2007. Marine optical biogeochemistry: The chemistry of ocean color. Chemical Reviews 107 (2): 402–418.

    Article  CAS  Google Scholar 

  • Cole, J.J., S. Findly, and M.L. Pace. 1988. Bacterial production in fresh and saltwater ecosystems: A cross-system overview. Marine Ecology Progress Series 43: 1–10.

    Article  Google Scholar 

  • Cummings, D., R. Dalrymple, K. Choi, and J. Jin. 2015. The tide-dominated Han River Delta, Korea: Geomorphology, Sedimentology, and Stratigraphic Architecture. Amsterdam: Elsevier 376 pp.

    Google Scholar 

  • Dahlgren, K., A.-K.E. Wiklund, and A. Andersson. 2011. The influence of autotrophy, heterotrophy and temperature on pelagic food web efficiency in a brackish water system. Aquatic Ecology 45 (3): 307–323.

    Article  Google Scholar 

  • Degerman, R., R. Lefébure, P. Byström, U. Båmstedt, S. Larsson, and A. Andersson. 2018. Food web interactions determine energy transfer efficiency and top consumer responses to inputs of dissolved organic carbon. Hydrobiologia 805 (1): 131–146.

    Article  CAS  Google Scholar 

  • del Giorgio, P.A., and J.J. Cole. 1998. Bacterial growth efficiency in natural aquatic systems. Annual Review of Ecology, Evolution, and Systematics 29 (1): 503–541.

    Article  Google Scholar 

  • del Giorgio, P.A., and J.J. Cole. 2000. Bacterial energetics and growth efficiency. In Microbial ecology of the oceans, ed. D.L. Kirchman, 1st ed., 289–325. Hoboken: Wiley.

    Google Scholar 

  • Dittmar, T., and G. Kattner. 2003. Recalcitrant dissolved organic matter in the ocean: Major contribution of small amphiphillics. Marine Chemistry 82 (1-2): 115–123.

    Article  CAS  Google Scholar 

  • Ducklow, H.W. 2000. Bacterial production and biomass in the oceans. In Microbial ecology of the oceans, ed. D.L. Kirchman, 1st ed., 85–120. Hoboken: Wiley.

    Google Scholar 

  • Ducklow, H.W., D.A. Purdie, P.J.Le.B Williams, and J.M. Davis. 1986. Bacterioplankton: A sink for carbon in a coastal marine plankton community. Science 232 (4752): 865–867.

    Article  CAS  Google Scholar 

  • Ducklow, H.W., D.L. Kirchman, and T.R. Anderson. 2002. The magnitude of spring bacterial production in the North Atlantic Ocean. Limnology and Oceanography 47 (6): 1684–1693.

    Article  Google Scholar 

  • Falkowski, P.G., and M.J. Oliver. 2007. Mix and match: How climate selects phytoplankton. Nature Reviews Microbiology 5 (10): 813–819.

    Article  CAS  Google Scholar 

  • Figueroa, D., O.F. Rowe, J. Paczkowdka, C. Legrand, and A. Andersson. 2016. Allochthonous carbon-a major driver of bacterioplankton production in the subarctic northern Baltic Sea. Microbial Ecology 71 (4): 789–801.

    Article  CAS  Google Scholar 

  • Findlay, S., M.L. Pace, D. Lints, and J.J. Cole. 1991. Weak coupling of bacterial and algal production in a heterotrophic ecosystem: The Hudson River estuary. Limnology and Oceanography 36 (2): 268–278.

    Article  Google Scholar 

  • Fuhrman, J.A., and F. Azam. 1980. Bacterioplankton secondary production estimates for coastal waters of British Columbia Antarctica, and California. Applied and Environmental Microbiology 39 (6): 1085–1095.

    Article  CAS  Google Scholar 

  • Fuhrman, J.A., and F. Azam. 1982. Thymidine incorporation as a measure of heterotrophic bacterioplankton prodution in marine surface waters: Evaluation and field results. Marine Biology 66 (2): 109–120.

    Article  Google Scholar 

  • Fukuda, R., H. Ogawa, T. Nagata, and I. Koike. 1998. Direct determination of carbon and nitrogen contents of natural bacterial assemblages in marine environments. Applied and Environmental Microbiology 64 (9): 3352–3358.

    Article  CAS  Google Scholar 

  • Goberville, E., G. Beaugrad, B. Sautour, P. Tréguer, and S. Team. 2010. Climate-driven changes in coastal marine systems of western Europe. Marine Ecology Progress Series 408: 129–147.

    Article  Google Scholar 

  • Goldman, J.C., D.A. Caron, and M.R. Dennett. 1987. Regulation of grow efficiency and ammonium regeneration in bacteria by substrate C:N ratio. Limnology and Oceanography 32 (6): 1239–1252.

    Article  CAS  Google Scholar 

  • Harley, C.D., A.R. Hughes, K.M. Hultgren, B.G. Miner, C.J.B. Sorte, C.S. Thornber, L.F. Rodriguez, L. Tomanek, and S.L. Williams. 2006. The impacts of climate change I coastal marine systems. Ecology Letters 9 (2): 228–241.

    Article  Google Scholar 

  • Hoch, M.P., and D.L. Kirchman. 1993. Seasonal and inter-annual variability in bacterial production and biomass in a temperate estuary. Marine Ecology Progress Series 98: 283–295.

    Article  Google Scholar 

  • Hoegh-Guldberg, O., and J.F. Bruno. 2010. The impact of climate change on the world’s marine ecosystems. Science 328 (5985): 1523–1528.

    Article  CAS  Google Scholar 

  • Hoppe, H.-G., P. Breithaupt, K. Walther, R. Koppe, S. Bleck, U. Sommer, and K. Jürgens. 2008. Climate warming in winter affects the coupling between phytoplankton and bacteria during the spring bloom: A mesocosm study. Aquatic Microbial Ecology 51: 105–115.

    Article  Google Scholar 

  • Hyun, J.-H., and K.-H. Kim. 2003. Bacterial abundance and production during the unique spring phytoplankton bloom in the Central Yellow Sea. Marine Ecology Progress Series 252: 77–88.

    Article  CAS  Google Scholar 

  • Hyun, J.-H., and E.J. Yang. 2003. Freezing seawater for the long-term storage of bacterial cells for microscopic enumeration. Journal of Microbiology 41: 262–265.

    Google Scholar 

  • Hyun, J.-H., J.K. Choi, K.H. Chung, E.-J. Yang, and M.-K. Kim. 1999. Tidally induced changes in bacterial growth and viability in the macrotidal Han River estuary, Yellow Sea. Estuarine, Coastal and Shelf Science 48 (2): 143–153.

    Article  CAS  Google Scholar 

  • Jahan, R., and J.K. Choi. 2014. Climate regime shift and phytoplankton phenology in a macrotidal estuary: Long-term surveys in Gyeonggi Bay, Korea. Estuaries and Coasts 37 (5): 1169–1187.

    Article  CAS  Google Scholar 

  • Jahnke R.A., and D.B. Craven. 1995. Quantifying the role of heterotrophic bacteria in the carbon cycle: A need for respiration rate measurements. Limnology and Oceanography 40 (2):436-441

  • Jansson, M., A.-K. Bergström, P. Bromqvist, and S. Drakare. 2000. Allochthonous organic carbon and phytoplankton/bacterioplankton production relationships in lakes. Ecology 81 (11): 3250–3255.

    Article  Google Scholar 

  • Joo, H., S. Son, J.-W. Park, J.J. Kang, J.-Y. Jeong, J.-I. Kwon, C.-K. Kang, and S.H. Lee. 2017. Small phytoplankton contribution to the total primary production in the highly productive Ulleung Basin in the east/Japan Sea. Deep-Sea Research Part II 143: 54–61.

    Article  Google Scholar 

  • Kim, S., C.-I. Zhang, J.-Y. Kim, J.-H. Oh, S. Kang, and J.B. Lee. 2007. Climate variability and its effects on major fisheries in Korea. Ocean Science Journal 42 (3): 179–192.

    Article  Google Scholar 

  • Kirchman, D.L. 2000. Microbial ecology of the oceans. 1st ed. Hoboken: Wiley.

    Google Scholar 

  • Kwon, S.K., and J.K. Choi. 1994. Ecological studies on phytoplankton in the lower Han River and Han River estuary. I. Environmental factors and primary productivity. Yellow Sea Research 6: 97–99 (in Korean).

    Google Scholar 

  • Lee, W.J., and K.J. Choi. 2000. The role of heterotrophic protists in the planktonic community of Kyeonggi Bay, Korea. Journal of the Korean Society of Oceanography 35 (1): 46–55.

    Google Scholar 

  • Lee, C.W., C.W. Bong, and Y.S. Hii. 2009. Temporal variation of bacterial respiration and growth efficiency in tropical coastal waters. Applied Environmental Microbiology 75 (24): 7594–9601.

    Article  CAS  Google Scholar 

  • MOF (Ministry of Oceans and Fisheries). 2014. Organization of the phytoplankton long-term data and island data (in Korean).

  • Morán, X.A.G., M. Estrada, J.M. Gasol, and C. Pedrós-Alió. 2002. Dissolved primary production and the strength of phytoplankton-bacterioplankton coupling in contrasting marine regions. Microbial Ecology 44 (3): 217–223.

    Article  CAS  Google Scholar 

  • Morán, X.A.G., Á. López-Urrutia, A. Calvo-Díaz, and W.K.W. Li. 2010. Increasing importance of small phytoplankton in a warmer ocean. Global Change Biology 16 (3): 1137–1144.

    Article  Google Scholar 

  • Moran, X.A.G., H.W. Ducklow, and M. Erickson. 2013. Carbon fluxes through estuarine bacteria reflect coupling with phytoplankton. Marine Ecology Progress Series 489: 75–85.

    Article  CAS  Google Scholar 

  • Morán, X.A.G., L. Alonxo-Sáez, E. Nogueira, H.W. Ducklow, N. González, Á. López-Urrutia, L. Díaz-Perez, A. Calvo-Díaz, N. Arandia-Gorostidi, and T.M. Huete-Stauffer. 2015. More, smaller bacteria in response to ocean’s warming? Proceedings of the Royal Society of London B 282 (1810): 20150371.

    Google Scholar 

  • Nagata, T. 2008. Organic matter-bacteria interactions in seawater. In Microbial ecology of the oceans, ed. D.L. Kirchman, 2nd ed., 207–241. New Jersey: Wiley-Liss.

    Chapter  Google Scholar 

  • O’Connor, M.I., M.F. Piehler, D.M. Leech, A. Anton, and J.F. Bruno. 2009. Warming and resource availability shift food web structure and metabolism. PLoS Biology 7 (8): e1000178. https://doi.org/10.1371/journal.pbio.1000178.

    Article  CAS  Google Scholar 

  • Park, G.S., and S.Y. Park. 2000. Long-term trends and temporal heterogeneity of water quality in tidally mixed estuarine waters. Marine Pollution Bulletin 40 (12): 1201–1209.

    Article  CAS  Google Scholar 

  • Parsons, T.R., Y. Maita, and C.M. Lalli. 1984. A manual of chemical and biological methods for seawater analysis. Oxford: Pergamon Press.

    Google Scholar 

  • Pomeroy, L.R., J.E. Sheldon, W.M. Sheldon, and JR. 1994. Changes in bacterial numbers and leucine assimilation during estimations of microbial respiratory rates in seawater by the precision Winkler method. Applied and Environmental Microbiology 60 (1): 328–332.

    Article  CAS  Google Scholar 

  • Porter, K.G., and Y.S. Feig. 1980. The use of DAPI for identifying and counting aquatic microflora. Limnology and Oceanography 25 (5): 943–948.

    Article  Google Scholar 

  • Preen, K., and D.L. Kirchman. 2004. Microbial respiration and production in the Delaware estuary. Aquatic Microbial Ecology 37: 109–119.

    Article  Google Scholar 

  • Ram, A.S.P., S. Nair, and D. Chandramohan. 2007. Bacterial growth efficiency in a tropical estuary: Seasonal variability subsidized by allochthonous carbon. Marine Ecology 53: 591–599.

    CAS  Google Scholar 

  • Riemann, B., P.K. Bjørnsen, S. Newell, and R. Fallon. 1987. Calculation of cell production of coastal marine bacteria based on measured incorporation of [3H]thymidine. Limnology and Oceanography 32 (2): 471–476.

    Article  CAS  Google Scholar 

  • Robinson, C. 2008. Heterotrophic bacterial respiration. In Microbial Ecology of the Oceans, ed. D.L. Kirchman, 2nd ed., 299–334. New Jersey: Wiley-Liss.

    Chapter  Google Scholar 

  • Sarmento, H., J.M. Montoya, E. Vazquex-Dominguez, D. Vaque, and J.M. Gasol. 2010. Warming effects on marine microbial food web processes: How far can we go when it comes to predictions? Philosophical Transactions of the Royal Society B: Biological Sciences 365 (1549): 2137–2149.

    Article  Google Scholar 

  • Sin, Y., E. Lee, Y. Lee, and K.-H. Shin. 2015. The river-estuarine continuum of nutrients and phytoplankton communities in an estuary physically divided by a sea dike. Estuaries, Coastal and Shelf Science 163: 279–289.

    Article  CAS  Google Scholar 

  • Sommer, U., and K. Lengfellner. 2008. Climate change and the timing, magnitude, and composition of phytoplankton spring bloom. Global Change Biology 14 (6): 1199–1208.

    Article  Google Scholar 

  • Stedmon, C.A., and R. Bro. 2008. Characterizing dissolved organic matter fluorescence with parallel factor analysis: A tutorial. Limnology and Oceanography: Methods 6: 572–579.

    CAS  Google Scholar 

  • Steeman-Nielsen, E. 1952. The use of radio-active carbon (C14) for measuring organic production in the sea. Journal du Conseil / Conseil Permanent International pour I’Exploration de la Mer 18 (2): 117–140.

    Article  Google Scholar 

  • Tang, Q., Y. Ying, and Q. Wu. 2016. The biomass yields and management challenges for the Yellow Sea large marine ecosystem. Environmental Development 17: 175–181.

    Article  Google Scholar 

  • Thottathil, S.D., K.K. Balachandran, G.V.M. Gupta, N.V. Madhu, and S. Nair. 2008. Influence of allochthonous input on autotrophic-heterotrophic switch-over in shallow waters of tropical estuary (Cochin estuary), India. Estuaries, Coastal and Shelf Science 78 (3): 551–562.

    Article  Google Scholar 

  • Williams, P.J.Le.B, and P.A. del Giorgio. 2005. Respiration in aquatic ecosystems: History and background. In Respiration in aquatic ecosystems, ed. P.A. del Giorgio and P.J.Le.B Williams, 1–17. New York: Oxford University Press.

    Google Scholar 

  • Wohlers, J., A. Engel, E. Zöllner, P. Breithaupt, K. Jürgens, H.-G. Hoppe, U. Sommer, and U. Riebesell. 2009. Changes in biogenic carbon flow in response to sea surface warming. Proceedings of the National Academy of Sciences of the United States of America 106 (17): 7067–7072.

    Article  CAS  Google Scholar 

  • Yang, E.J., J.K. Choi, and J.-H. Hyun. 2008. Seasonal variation in the community and size structure of nano- and microzooplankton in Gyeonggi Bay, Yellow Sea. Estuaries, Coastal and Shelf Science 77 (3): 320–330.

    Article  Google Scholar 

  • Yoon, B.I., and S.-B. Woo. 2013. Correlation between freshwater discharge and salinity intrusion in the Han River estuary, South Korea. Journal of Coastal Research 65: 1247–1252.

    Article  Google Scholar 

Download references

Acknowledgments

This study was supported by the Korean Long-term Marine Ecological Research (K-LTMER) program titled “Long-term change of structure and function in marine ecosystems of Korea” funded by the Korean Ministry of Oceans and Fisheries, and partly by the Mid-career Researcher Program funded by the Korean Ministry of Science and ICT (No. 2018R1A2B2006340).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jung-Ho Hyun.

Additional information

Communicated by Mark J. Brush

Electronic supplementary material

ESM 1

(DOCX 336 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kim, B., An, SU., Kim, TH. et al. Uncoupling between Heterotrophic Bacteria and Phytoplankton and Changes in Trophic Balance Associated with Warming of Seawater in Gyeonggi Bay, Yellow Sea. Estuaries and Coasts 43, 535–546 (2020). https://doi.org/10.1007/s12237-019-00606-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12237-019-00606-1

Keywords

Navigation