Skip to main content
Log in

Implications of Soil Microbial Community Assembly for Ecosystem Restoration: Patterns, Process, and Potential

  • Environmental Microbiology
  • Published:
Microbial Ecology Aims and scope Submit manuscript

Abstract

While it is now widely accepted that microorganisms provide essential functions in restoration ecology, the nature of relationships between microbial community assembly and ecosystem recovery remains unclear. There has been a longstanding challenge to decipher whether microorganisms facilitate or simply follow ecosystem recovery, and evidence for each is mixed at best. We propose that understanding microbial community assembly processes is critical to understanding the role of microorganisms during ecosystem restoration and thus optimizing management strategies. We examine how the connection between environment, community structure, and function is fundamentally underpinned by the processes governing community assembly of these microbial communities. We review important factors to consider in evaluating microbial community structure in the context of ecosystem recovery as revealed in studies of microbial succession: (1) variation in community assembly processes, (2) linkages to ecosystem function, and (3) measurable microbial community attributes. We seek to empower restoration ecology with microbial assembly and successional understandings that can generate actionable insights and vital contexts for ecosystem restoration efforts.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Box 1

Similar content being viewed by others

Data Availability

Not applicable.

References

  1. Jacobs DF, Oliet JA, Aronson J, Bolte A, Bullock JM, Donoso PJ, Landhäusser SM, Madsen P, Peng S, Rey-Benayas JM (2015) Restoring forests: what constitutes success in the twenty-first century? vol. 46. Springer, pp. 601–614

  2. Perring MP, Standish RJ, Price JN, Craig MD, Erickson TE, Ruthrof KX, Whiteley AS, Valentine LE, Hobbs RJ (2015) Advances in restoration ecology: rising to the challenges of the coming decades. Ecosphere 6:1–25

    Article  Google Scholar 

  3. Perring MP, De Frenne P, Baeten L, Maes SL, Depauw L, Blondeel H, Carón MM, Verheyen K (2016) Global environmental change effects on ecosystems: the importance of land-use legacies. Glob Change Biol 22:1361–1371

    Article  Google Scholar 

  4. Suding KN (2011) Toward an era of restoration in ecology: successes, failures, and opportunities ahead. Annu Rev Ecol Evol Syst 42:465–487

    Article  Google Scholar 

  5. BenDor T, Lester TW, Livengood A, Davis A, Yonavjak L (2015) Estimating the size and impact of the ecological restoration economy. PLoS ONE 10:e0128339

    Article  PubMed  PubMed Central  Google Scholar 

  6. Koziol L, Bever JD (2017) The missing link in grassland restoration: arbuscular mycorrhizal fungi inoculation increases plant diversity and accelerates succession. J Appl Ecol 54:1301–1309

    Article  Google Scholar 

  7. Kindscher K, Tieszen LL (1998) Floristic and soil organic matter changes after five and thirty-five years of native tallgrass prairie restoration. Restor Ecol 6:181–196

    Article  Google Scholar 

  8. Sluis WJ (2002) Patterns of species richness and composition in re-created grassland. Restor Ecol 10:677–684

    Article  Google Scholar 

  9. Piper JK, Schmidt ES, Janzen AJ (2007) Effects of species richness on resident and target species components in a prairie restoration. Restor Ecol 15:189–198

    Article  Google Scholar 

  10. Grman E, Bassett T, Zirbel CR, Brudvig LA (2015) Dispersal and establishment filters influence the assembly of restored prairie plant communities. Restor Ecol 23:892–899

    Article  Google Scholar 

  11. Baker S, Eckerberg K (2016) Ecological restoration success: a policy analysis understanding. Restor Ecol 24:284–290

    Article  Google Scholar 

  12. Guo LB, Gifford RM (2002) Soil carbon stocks and land use change: a meta analysis. Glob Change Biol 8:345–360

    Article  Google Scholar 

  13. Hua F, Wang X, Zheng X, Fisher B, Wang L, Zhu J, Tang Y, Yu DW, Wilcove DS (2016) Opportunities for biodiversity gains under the world’s largest reforestation programme. Nat Commun 7:1–11

    Article  Google Scholar 

  14. Harris J (2009) Soil microbial communities and restoration ecology: facilitators or followers? Science 325:573–574

    Article  CAS  PubMed  Google Scholar 

  15. Lynum CA, Bulseco AN, Dunphy CM, Osborne SM, Vineis JH, Bowen JL (2020) Microbial community response to a passive salt marsh restoration. Estuaries Coasts 43:1439–1455

    Article  CAS  Google Scholar 

  16. Sun Y, Wang S, Niu J (2018) Microbial community evolution of black and stinking rivers during in situ remediation through micro-nano bubble and submerged resin floating bed technology. Biores Technol 258:187–194

    Article  CAS  Google Scholar 

  17. Lin Q, Sekar R, Marrs R, Zhang Y (2019) Effect of river ecological restoration on biofilm microbial community composition. Water 11:1244

    Article  CAS  Google Scholar 

  18. Igalavithana AD, Lee S-E, Lee YH, Tsang DC, Rinklebe J, Kwon EE, Ok YS (2017) Heavy metal immobilization and microbial community abundance by vegetable waste and pine cone biochar of agricultural soils. Chemosphere 174:593–603

    Article  CAS  PubMed  Google Scholar 

  19. Yang X, Tsibart A, Nam H, Hur J, El-Naggar A, Tack FM, Wang C-H, Lee YH, Tsang DC, Ok YS (2019) Effect of gasification biochar application on soil quality: trace metal behavior, microbial community, and soil dissolved organic matter. J Hazard Mater 365:684–694

    Article  CAS  PubMed  Google Scholar 

  20. Andersen R, Grasset L, Thormann MN, Rochefort L, Francez A-J (2010) Changes in microbial community structure and function following Sphagnum peatland restoration. Soil Biol Biochem 42:291–301

    Article  CAS  Google Scholar 

  21. Banning NC, Gleeson DB, Grigg AH, Grant CD, Andersen GL, Brodie EL, Murphy D (2011) Soil microbial community successional patterns during forest ecosystem restoration. Appl Environ Microbiol 77:6158–6164

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Smith R, Shiel R, Bardgett RD, Millward D, Corkhill P, Rolph G, Hobbs P, Peacock S (2003) Soil microbial community, fertility, vegetation and diversity as targets in the restoration management of a meadow grassland. J Appl Ecol 40:51–64

    Article  Google Scholar 

  23. Van Der Heijden MG, Klironomos JN, Ursic M, Moutoglis P, Streitwolf-Engel R, Boller T, Wiemken A, Sanders IR (1998) Mycorrhizal fungal diversity determines plant biodiversity, ecosystem variability and productivity. Nature 396:69–72

    Article  Google Scholar 

  24. Van der Bij A, Weijters M, Bobbink R, Harris JA, Pawlett M, Ritz K, Benetková P, Moradi J, Frouz J, Van Diggelen R (2018) Facilitating ecosystem assembly: plant-soil interactions as a restoration tool. Biol Cons 220:272–279

    Article  Google Scholar 

  25. Pande V, Pandey SC, Sati D, Pande V, Samant M (2020) Bioremediation: an emerging effective approach towards environment restoration. Environ Sustain 3:91–103

    Article  CAS  Google Scholar 

  26. Beesley L, Moreno-Jiménez E, Gomez-Eyles JL, Harris E, Robinson B, Sizmur T (2011) A review of biochars’ potential role in the remediation, revegetation and restoration of contaminated soils. Environ Pollut 159:3269–3282

    Article  CAS  PubMed  Google Scholar 

  27. Farrell HL, Léger A, Breed MF, Gornish ES (2020) Restoration, soil organisms, and soil processes: emerging approaches. Restor Ecol 28:S307–S310

    Article  Google Scholar 

  28. Hamonts K, Bissett A, Macdonald BC, Barton PS, Manning AD, Young A (2017) Effects of ecological restoration on soil microbial diversity in a temperate grassy woodland. Appl Soil Ecol 117:117–128

    Article  Google Scholar 

  29. Knelman JE, Legg TM, O’Neill SP, Washenberger CL, González A, Cleveland CC, Nemergut DR (2012) Bacterial community structure and function change in association with colonizer plants during early primary succession in a glacier forefield. Soil Biol Biochem 46:172–180

    Article  CAS  Google Scholar 

  30. Nemergut DR, Knelman JE, Ferrenberg S, Bilinski T, Melbourne B, Jiang L, Violle C, Darcy JL, Prest T, Schmidt SK (2016) Decreases in average bacterial community rRNA operon copy number during succession. ISME J 10:1147–1156

    Article  CAS  PubMed  Google Scholar 

  31. Koziol L, Schultz PA, House GL, Bauer JT, Middleton EL, Bever JD (2018) The plant microbiome and native plant restoration: the example of native mycorrhizal fungi. Bioscience 68:996–1006

    Article  Google Scholar 

  32. Wubs E, Van Der Putten WH, Bosch M, Bezemer TM (2016) Soil inoculation steers restoration of terrestrial ecosystems. Nature plants 2:1–5

    Article  Google Scholar 

  33. Kardol P, Martijn Bezemer T, Van Der Putten WH (2006) Temporal variation in plant–soil feedback controls succession. Ecol Lett 9:1080–1088

    Article  PubMed  Google Scholar 

  34. Gorka S, Dietrich M, Mayerhofer W, Gabriel R, Wiesenbauer J, Martin V, Zheng Q, Imai B, Prommer J, Weidinger M (2019) Rapid transfer of plant photosynthates to soil bacteria via ectomycorrhizal hyphae and its interaction with nitrogen availability. Front Microbiol 10:168

    Article  PubMed  PubMed Central  Google Scholar 

  35. Kaiser C, Kilburn MR, Clode PL, Fuchslueger L, Koranda M, Cliff JB, Solaiman ZM, Murphy DV (2015) Exploring the transfer of recent plant photosynthates to soil microbes: mycorrhizal pathway vs direct root exudation. New Phytol 205:1537–1551

    Article  CAS  PubMed  Google Scholar 

  36. Nemergut DR, Schmidt SK, Fukami T, O’Neill SP, Bilinski TM, Stanish LF, Knelman JE, Darcy JL, Lynch RC, Wickey P (2013) Patterns and processes of microbial community assembly. Microbiol Mol Biol Rev 77:342–356

    Article  PubMed  PubMed Central  Google Scholar 

  37. Van der Bij A, Pawlett M, Harris JA, Ritz K, van Diggelen R (2017) Soil microbial community assembly precedes vegetation development after drastic techniques to mitigate effects of nitrogen deposition. Biol Cons 212:476–483

    Article  Google Scholar 

  38. Calderón K, Spor A, Breuil M-C, Bru D, Bizouard F, Violle C, Barnard RL, Philippot L (2017) Effectiveness of ecological rescue for altered soil microbial communities and functions. ISME J 11:272–283

    Article  PubMed  Google Scholar 

  39. Chen W, Jiao S, Li Q, Du N (2020) Dispersal limitation relative to environmental filtering governs the vertical small-scale assembly of soil microbiomes during restoration. J Appl Ecol 57:402–412

    Article  Google Scholar 

  40. Wang K, Wang X, Fei H, Wan C, Han F (2022) Changes in diversity, composition and assembly processes of soil microbial communities during Robinia pseudoacacia L. restoration on the Loess Plateau, China. Journal of Arid Land 14(5):561–575. https://doi.org/10.1007/s40333-022-0064-2

  41. Felske A, Wolterink A, Van Lis R, De Vos WM, Akkermans AD (2000) Response of a soil bacterial community to grassland succession as monitored by 16S rRNA levels of the predominant ribotypes. Appl Environ Microbiol 66:3998–4003

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Kuramae EE, Gamper HA, Yergeau E, Piceno YM, Brodie EL, DeSantis TZ, Andersen GL, Van Veen JA, Kowalchuk GA (2010) Microbial secondary succession in a chronosequence of chalk grasslands. ISME J 4:711–715

    Article  PubMed  Google Scholar 

  43. Gros R, Jocteur Monrozier L, Faivre P (2006) Does disturbance and restoration of alpine grassland soils affect the genetic structure and diversity of bacterial and N2-fixing populations? Environ Microbiol 8:1889–1901

    Article  CAS  PubMed  Google Scholar 

  44. Jangid K, Williams MA, Franzluebbers AJ, Blair JM, Coleman DC, Whitman WB (2010) Development of soil microbial communities during tallgrass prairie restoration. Soil Biol Biochem 42:302–312

    Article  CAS  Google Scholar 

  45. Dini-Andreote F, Stegen JC, Van Elsas JD, Salles JF (2015) Disentangling mechanisms that mediate the balance between stochastic and deterministic processes in microbial succession. Proc Natl Acad Sci 112:E1326–E1332

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Knelman JE, Graham EB, Ferrenberg S, Lecoeuvre A, Labrado A, Darcy JL, Nemergut DR, Schmidt SK (2017) Rapid shifts in soil nutrients and decomposition enzyme activity in early succession following forest fire. Forests 8:347

    Article  Google Scholar 

  47. Graham EB, Crump AR, Resch CT, Fansler S, Arntzen E, Kennedy DW, Fredrickson JK, Stegen JC (2016) Coupling spatiotemporal community assembly processes to changes in microbial metabolism. Front Microbiol 7:1949

    Article  PubMed  PubMed Central  Google Scholar 

  48. Graham EB, Crump AR, Resch CT, Fansler S, Arntzen E, Kennedy DW, Fredrickson JK, Stegen JC (2017) Deterministic influences exceed dispersal effects on hydrologically-connected microbiomes. Environ Microbiol 19:1552–1567

    Article  CAS  PubMed  Google Scholar 

  49. Stegen JC, Lin X, Fredrickson JK, Chen X, Kennedy DW, Murray CJ, Rockhold ML, Konopka A (2013) Quantifying community assembly processes and identifying features that impose them. ISME J 7:2069–2079

    Article  PubMed  PubMed Central  Google Scholar 

  50. Vellend M (2010) Conceptual synthesis in community ecology. Q Rev Biol 85:183–206

    Article  PubMed  Google Scholar 

  51. Waldrop M, Firestone M (2006) Response of microbial community composition and function to soil climate change. Microb Ecol 52:716–724

    Article  CAS  PubMed  Google Scholar 

  52. Brockett BF, Prescott CE, Grayston SJ (2012) Soil moisture is the major factor influencing microbial community structure and enzyme activities across seven biogeoclimatic zones in western Canada. Soil Biol Biochem 44:9–20

    Article  CAS  Google Scholar 

  53. Crump BC, Hopkinson CS, Sogin ML, Hobbie JE (2004) Microbial biogeography along an estuarine salinity gradient: combined influences of bacterial growth and residence time. Appl Environ Microbiol 70:1494–1505

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Lozupone CA, Knight R (2007) Global patterns in bacterial diversity. Proc Natl Acad Sci 104:11436–11440

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Lindström ES, Kamst-Van Agterveld MP, Zwart G (2005) Distribution of typical freshwater bacterial groups is associated with pH, temperature, and lake water retention time. Appl Environ Microbiol 71:8201–8206

    Article  PubMed  PubMed Central  Google Scholar 

  56. Fierer N, Jackson RB (2006) The diversity and biogeography of soil bacterial communities. Proc Natl Acad Sci 103:626–631

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Burke DJ, Hamerlynck EP, Hahn D (2002) Interactions among plant species and microorganisms in salt marsh sediments. Appl Environ Microbiol 68:1157–1164

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Hamilton EW III, Frank DA (2001) Can plants stimulate soil microbes and their own nutrient supply? Evidence from a grazing tolerant grass. Ecology 82:2397–2402

    Article  Google Scholar 

  59. Zak DR, Holmes WE, White DC, Peacock AD, Tilman D (2003) Plant diversity, soil microbial communities, and ecosystem function: are there any links? Ecology 84:2042–2050

    Article  Google Scholar 

  60. De Vries FT, Manning P, Tallowin JR, Mortimer SR, Pilgrim ES, Harrison KA, Hobbs PJ, Quirk H, Shipley B, Cornelissen JH (2012) Abiotic drivers and plant traits explain landscape-scale patterns in soil microbial communities. Ecol Lett 15:1230–1239

    Article  PubMed  Google Scholar 

  61. Eilers KG, Lauber CL, Knight R, Fierer N (2010) Shifts in bacterial community structure associated with inputs of low molecular weight carbon compounds to soil. Soil Biol Biochem 42:896–903

    Article  CAS  Google Scholar 

  62. Castle SC, Nemergut DR, Grandy AS, Leff JW, Graham EB, Hood E, Schmidt SK, Wickings K, Cleveland CC (2016) Biogeochemical drivers of microbial community convergence across actively retreating glaciers. Soil Biol Biochem 101:74–84

    Article  CAS  Google Scholar 

  63. Lladó S, López-Mondéjar R, Baldrian P (2018) Drivers of microbial community structure in forest soils. Appl Microbiol Biotechnol 102:4331–4338

    Article  PubMed  Google Scholar 

  64. Knelman JE, Schmidt SK, Lynch RC, Darcy JL, Castle SC, Cleveland CC, Nemergut DR (2014) Nutrient addition dramatically accelerates microbial community succession. PLoS ONE 9:e102609

    Article  PubMed  PubMed Central  Google Scholar 

  65. Graham EB, Stegen JC (2017) Dispersal-based microbial community assembly decreases biogeochemical function. Processes 5:65

    Article  Google Scholar 

  66. De Bie T, De Meester L, Brendonck L, Martens K, Goddeeris B, Ercken D, Hampel H, Denys L, Vanhecke L, Van der Gucht K (2012) Body size and dispersal mode as key traits determining metacommunity structure of aquatic organisms. Ecol Lett 15:740–747

    Article  PubMed  Google Scholar 

  67. Padial AA, Ceschin F, Declerck SA, De Meester L, Bonecker CC, Lansac-Tôha FA, Rodrigues L, Rodrigues LC, Train S, Velho LF (2014) Dispersal ability determines the role of environmental, spatial and temporal drivers of metacommunity structure. PLoS ONE 9:e111227

    Article  PubMed  PubMed Central  Google Scholar 

  68. DeLong JP, Okie JG, Moses ME, Sibly RM, Brown JH (2010) Shifts in metabolic scaling, production, and efficiency across major evolutionary transitions of life. Proc Natl Acad Sci 107:12941–12945

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Wu W, Lu H-P, Sastri A, Yeh Y-C, Gong G-C, Chou W-C, Hsieh C-H (2018) Contrasting the relative importance of species sorting and dispersal limitation in shaping marine bacterial versus protist communities. ISME J 12:485–494

    Article  PubMed  Google Scholar 

  70. Yan W, Ma H, Shi G, Li Y, Sun B, Xiao X, Zhang Y (2017) Independent shifts of abundant and rare bacterial populations across East Antarctica glacial foreland. Front Microbiol 8:1534

    Article  PubMed  PubMed Central  Google Scholar 

  71. Xue Y, Chen H, Yang JR, Liu M, Huang B, Yang J (2018) Distinct patterns and processes of abundant and rare eukaryotic plankton communities following a reservoir cyanobacterial bloom. ISME J 12:2263–2277

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Pan C, Feng Q, Li Y, Li Y, Liu L, Yu X, Ren S (2022) Rare soil bacteria are more responsive in desertification restoration than abundant bacteria. Environ Sci Pollut Res 29:33323–33334

    Article  Google Scholar 

  73. Turley NE, Bell-Dereske L, Evans SE, Brudvig LA (2020) Agricultural land-use history and restoration impact soil microbial biodiversity. J Appl Ecol 57:852–863

    Article  Google Scholar 

  74. Hu L, Li Q, Yan J, Liu C, Zhong J (2022) Vegetation restoration facilitates belowground microbial network complexity and recalcitrant soil organic carbon storage in southwest China karst region. Sci Total Environ 820:153137

    Article  CAS  PubMed  Google Scholar 

  75. Cao J, Pan H, Chen Z, Shang H (2020) Bacterial, fungal, and archaeal community assembly patterns and their determining factors across three subalpine stands at different stages of natural restoration after clear-cutting. J Soils Sediments 20:2794–2803

    Article  CAS  Google Scholar 

  76. Ferrenberg S, O’neill SP, Knelman JE, Todd B, Duggan S, Bradley D, Robinson T, Schmidt SK, Townsend AR, Williams MW (2013) Changes in assembly processes in soil bacterial communities following a wildfire disturbance. ISME J 7:1102–1111

    Article  PubMed  PubMed Central  Google Scholar 

  77. Elgersma KJ, Ehrenfeld JG, Yu S, Vor T (2011) Legacy effects overwhelm the short-term effects of exotic plant invasion and restoration on soil microbial community structure, enzyme activities, and nitrogen cycling. Oecologia 167:733–745

    Article  PubMed  Google Scholar 

  78. Vannette RL, Fukami T (2014) Historical contingency in species interactions: towards niche-based predictions. Ecol Lett 17:115–124

    Article  PubMed  Google Scholar 

  79. Fukami T (2015) Historical contingency in community assembly: integrating niches, species pools, and priority effects. Annu Rev Ecol Evol Syst 46:1–23

    Article  Google Scholar 

  80. Xiang X, Shi Y, Yang J, Kong J, Lin X, Zhang H, Zeng J, Chu H (2014) Rapid recovery of soil bacterial communities after wildfire in a Chinese boreal forest. Sci Rep 4:1–8

    Article  Google Scholar 

  81. Hart SC, DeLuca TH, Newman GS, MacKenzie MD, Boyle SI (2005) Post-fire vegetative dynamics as drivers of microbial community structure and function in forest soils. For Ecol Manage 220:166–184

    Article  Google Scholar 

  82. Guo Y, Hou L, Zhang Z, Zhang J, Cheng J, Wei G, Lin Y (2019) Soil microbial diversity during 30 years of grassland restoration on the Loess Plateau, China: tight linkages with plant diversity. Land Degrad Dev 30:1172–1182

    Article  Google Scholar 

  83. Cardinale BJ, Matulich KL, Hooper DU, Byrnes JE, Duffy E, Gamfeldt L, Balvanera P, O’connor MI, Gonzalez A (2011) The functional role of producer diversity in ecosystems. Am J Bot 98:572–592

    Article  PubMed  Google Scholar 

  84. Hooper DU, Adair EC, Cardinale BJ, Byrnes JE, Hungate BA, Matulich KL, Gonzalez A, Duffy JE, Gamfeldt L, O’Connor MI (2012) A global synthesis reveals biodiversity loss as a major driver of ecosystem change. Nature 486:105–108

    Article  CAS  PubMed  Google Scholar 

  85. Langenheder S, Bulling MT, Solan M, Prosser JI (2010) Bacterial biodiversity-ecosystem functioning relations are modified by environmental complexity. PLoS ONE 5:e10834

    Article  PubMed  PubMed Central  Google Scholar 

  86. Bell T, Newman JA, Silverman BW, Turner SL, Lilley AK (2005) The contribution of species richness and composition to bacterial services. Nature 436:1157–1160

    Article  CAS  PubMed  Google Scholar 

  87. Hooper DU, Chapin FS III, Ewel JJ, Hector A, Inchausti P, Lavorel S, Lawton JH, Lodge D, Loreau M, Naeem S (2005) Effects of biodiversity on ecosystem functioning: a consensus of current knowledge. Ecol Monogr 75:3–35

    Article  Google Scholar 

  88. Allan E, Weisser WW, Fischer M, Schulze E-D, Weigelt A, Roscher C, Baade J, Barnard RL, Beßler H, Buchmann N (2013) A comparison of the strength of biodiversity effects across multiple functions. Oecologia 173:223–237

    Article  PubMed  Google Scholar 

  89. Knelman JE, Nemergut DR (2014) Changes in community assembly may shift the relationship between biodiversity and ecosystem function. vol. 5. Frontiers Media SA, pp. 424

  90. Allison SD, Martiny JB (2008) Resistance, resilience, and redundancy in microbial communities. Proc Natl Acad Sci 105:11512–11519

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Louca S, Polz MF, Mazel F, Albright MB, Huber JA, O’Connor MI, Ackermann M, Hahn AS, Srivastava DS, Crowe SA (2018) Function and functional redundancy in microbial systems. Nature ecology & evolution 2:936–943

    Article  Google Scholar 

  92. Van der Gucht K, Cottenie K, Muylaert K, Vloemans N, Cousin S, Declerck S, Jeppesen E, Conde-Porcuna J-M, Schwenk K, Zwart G (2007) The power of species sorting: local factors drive bacterial community composition over a wide range of spatial scales. Proc Natl Acad Sci 104:20404–20409

    Article  PubMed  PubMed Central  Google Scholar 

  93. Lindström ES, Langenheder S (2012) Local and regional factors influencing bacterial community assembly. Environ Microbiol Rep 4:1–9

    Article  PubMed  Google Scholar 

  94. Grime J (1998) Benefits of plant diversity to ecosystems: immediate, filter and founder effects. J Ecol 86:902–910

    Article  Google Scholar 

  95. Loreau M, Hector A (2001) Partitioning selection and complementarity in biodiversity experiments. Nature 412:72–76

    Article  CAS  PubMed  Google Scholar 

  96. Tilman D, Lehman CL, Bristow CE (1998) Diversity-stability relationships: statistical inevitability or ecological consequence? Am Nat 151:277–282

    Article  CAS  PubMed  Google Scholar 

  97. Doak DF, Bigger D, Harding E, Marvier M, O’malley R, Thomson D (1998) The statistical inevitability of stability-diversity relationships in community ecology. Am Nat 151:264–276

    Article  CAS  PubMed  Google Scholar 

  98. Tilman D (1999) The ecological consequences of changes in biodiversity: a search for general principles. Ecology 80:1455–1474

    Google Scholar 

  99. Pulliam HR (1988) Sources, sinks, and population regulation. Am Nat 132:652–661

    Article  Google Scholar 

  100. Shmida A, Wilson MV (1985) Biological determinants of species diversity. J Biogeogr 12(1):1–20. http://www.jstor.com/stable/2845026

  101. Lindström ES, Östman Ö (2011) The importance of dispersal for bacterial community composition and functioning. PLoS ONE 6:e25883

    Article  PubMed  PubMed Central  Google Scholar 

  102. Naeem S, Wright JP (2003) Disentangling biodiversity effects on ecosystem functioning: deriving solutions to a seemingly insurmountable problem. Ecol Lett 6:567–579

    Article  Google Scholar 

  103. Suding KN, Lavorel S, Chapin Iii F, Cornelissen JH, Díaz S, Garnier E, Goldberg D, Hooper DU, Jackson ST, Navas ML (2008) Scaling environmental change through the community-level: a trait-based response-and-effect framework for plants. Glob Change Biol 14:1125–1140

    Article  Google Scholar 

  104. Fierer N, Bradford MA, Jackson RB (2007) Toward an ecological classification of soil bacteria. Ecology 88:1354–1364

    Article  PubMed  Google Scholar 

  105. Philippot L, Andersson SG, Battin TJ, Prosser JI, Schimel JP, Whitman WB, Hallin S (2010) The ecological coherence of high bacterial taxonomic ranks. Nat Rev Microbiol 8:523–529

    Article  CAS  PubMed  Google Scholar 

  106. Martiny AC, Treseder K, Pusch G (2013) Phylogenetic conservatism of functional traits in microorganisms. ISME J 7:830–838

    Article  CAS  PubMed  Google Scholar 

  107. Allison S (2012) A trait-based approach for modelling microbial litter decomposition. Ecol Lett 15:1058–1070

    Article  CAS  PubMed  Google Scholar 

  108. Jiang L, Pu Z, Nemergut DR (2008) On the importance of the negative selection effect for the relationship between biodiversity and ecosystem functioning. Oikos 117:488–493

    Article  Google Scholar 

  109. Malik AA, Martiny JB, Brodie EL, Martiny AC, Treseder KK, Allison SD (2020) Defining trait-based microbial strategies with consequences for soil carbon cycling under climate change. ISME J 14:1–9

    Article  CAS  PubMed  Google Scholar 

  110. Karaoz U, Brodie EL (2022) microTrait: a toolset for a trait-based representation of microbial genomes. Front. Bioinform. Sec. Genomic Analysis: 2. https://doi.org/10.3389/fbinf.2022.918853

  111. Hobbs RJ, Harris JA (2001) Restoration ecology: repairing the earth’s ecosystems in the new millennium. Restor Ecol 9:239–246

    Article  Google Scholar 

  112. Palmer MA, Zedler JB, Falk DA (2016) Foundations of restoration ecology. Springer

    Book  Google Scholar 

  113. Liu W, Graham EB, Dong Y, Zhong L, Zhang J, Qiu C, Chen R, Lin X, Feng Y (2021) Balanced stochastic versus deterministic assembly processes benefit diverse yet uneven ecosystem functions in representative agroecosystems. Environ Microbiol 23:391–404

    Article  CAS  PubMed  Google Scholar 

  114. Liu W, Graham EB, Zhong L, Zhang J, Li S, Lin X, Feng Y (2020) Long-term stochasticity combines with short-term variability in assembly processes to underlie rice paddy sustainability. Front Microbiol 11:873

    Article  PubMed  PubMed Central  Google Scholar 

  115. Wall DH, Nielsen UN, Six J (2015) Soil biodiversity and human health. Nature 528:69–76

    Article  CAS  PubMed  Google Scholar 

  116. Van Der Heijden MG, Bardgett RD, Van Straalen NM (2008) The unseen majority: soil microbes as drivers of plant diversity and productivity in terrestrial ecosystems. Ecol Lett 11:296–310

    Article  PubMed  Google Scholar 

  117. Castle SC, Lekberg Y, Affleck D, Cleveland CC (2016) Soil abiotic and biotic controls on plant performance during primary succession in a glacial landscape. J Ecol 104:1555–1565

    Article  Google Scholar 

  118. Patsch D, van Vliet S, Marcantini LG, Johnson DR (2018) Generality of associations between biological richness and the rates of metabolic processes across microbial communities. Environ Microbiol 20:4356–4368

    Article  CAS  PubMed  Google Scholar 

  119. Bardgett RD, McAlister E (1999) The measurement of soil fungal: bacterial biomass ratios as an indicator of ecosystem self-regulation in temperate meadow grasslands. Biol Fertil Soils 29:282–290

    Article  Google Scholar 

  120. Li C, Fultz LM, Moore-Kucera J, Acosta-Martínez V, Kakarla M, Weindorf DC (2018) Soil microbial community restoration in Conservation Reserve Program semi-arid grasslands. Soil Biol Biochem 118:166–177

    Article  CAS  Google Scholar 

  121. Spohn M, Novák TJ, Incze J, Giani L (2016) Dynamics of soil carbon, nitrogen, and phosphorus in calcareous soils after land-use abandonment–a chronosequence study. Plant Soil 401:185–196

    Article  CAS  Google Scholar 

  122. Morriën E, Hannula SE, Snoek LB, Helmsing NR, Zweers H, De Hollander M, Soto RL, Bouffaud M-L, Buée M, Dimmers W (2017) Soil networks become more connected and take up more carbon as nature restoration progresses. Nat Commun 8:1–10

    Article  Google Scholar 

  123. Clemmensen K, Bahr A, Ovaskainen O, Dahlberg A, Ekblad A, Wallander H, Stenlid J, Finlay R, Wardle D, Lindahl B (2013) Roots and associated fungi drive long-term carbon sequestration in boreal forest. Science 339:1615–1618

    Article  CAS  PubMed  Google Scholar 

  124. Bailey VL, Smith JL, Bolton H Jr (2002) Fungal-to-bacterial ratios in soils investigated for enhanced C sequestration. Soil Biol Biochem 34:997–1007

    Article  CAS  Google Scholar 

  125. Malik AA, Chowdhury S, Schlager V, Oliver A, Puissant J, Vazquez PG, Jehmlich N, Von Bergen M, Griffiths RI, Gleixner G (2016) Soil fungal: bacterial ratios are linked to altered carbon cycling. Front Microbiol 7:1247

    Article  PubMed  PubMed Central  Google Scholar 

  126. Rapparini F, Peñuelas J (2014) Mycorrhizal fungi to alleviate drought stress on plant growthUse of microbes for the alleviation of soil stresses, volume 1. Springer, pp. 21–42

  127. Wilson GW, Rice CW, Rillig MC, Springer A, Hartnett DC (2009) Soil aggregation and carbon sequestration are tightly correlated with the abundance of arbuscular mycorrhizal fungi: results from long-term field experiments. Ecol Lett 12:452–461

    Article  PubMed  Google Scholar 

  128. Knops JM, Tilman D (2000) Dynamics of soil nitrogen and carbon accumulation for 61 years after agricultural abandonment. Ecology 81:88–98

    Article  Google Scholar 

  129. McLauchlan KK, Hobbie SE, Post WM (2006) Conversion from agriculture to grassland builds soil organic matter on decadal timescales. Ecol Appl 16:143–153

    Article  PubMed  Google Scholar 

  130. Harris J (2003) Measurements of the soil microbial community for estimating the success of restoration. Eur J Soil Sci 54:801–808

    Article  Google Scholar 

  131. Martin LM, Moloney KA, Wilsey BJ (2005) An assessment of grassland restoration success using species diversity components. J Appl Ecol: 327–336. https://besjournals.onlinelibrary.wiley.com/doi/full/10.1111/j.1365-2664.2005.01019.x

  132. Polley HW, Derner JD, Wilsey BJ (2005) Patterns of plant species diversity in remnant and restored tallgrass prairies. Restor Ecol 13:480–487

    Article  Google Scholar 

  133. Middleton EL, Bever JD, Schultz PA (2010) The effect of restoration methods on the quality of the restoration and resistance to invasion by exotics. Restor Ecol 18:181–187

    Article  Google Scholar 

  134. De Deyn GB, Raaijmakers CE, Zoomer HR, Berg MP, de Ruiter PC, Verhoef HA, Bezemer TM, van der Putten WH (2003) Soil invertebrate fauna enhances grassland succession and diversity. Nature 422:711–713

    Article  PubMed  Google Scholar 

  135. Frouz J, Prach K, Pižl V, Háněl L, Starý J, Tajovský K, Materna J, Balik V, Kalčík J, Řehounková K (2008) Interactions between soil development, vegetation and soil fauna during spontaneous succession in post mining sites. Eur J Soil Biol 44:109–121

    Article  Google Scholar 

  136. Ehrenfeld JG (2003) Effects of exotic plant invasions on soil nutrient cycling processes. Ecosystems 6:503–523

    Article  CAS  Google Scholar 

  137. Liao CZ, Luo YQ, Fang CM, Chen JK, Li B (2008) Litter pool sizes, decomposition, and nitrogen dynamics in Spartina alterniflora-invaded and native coastal marshlands of the Yangtze Estuary. Oecologia 156:589–600

    Article  PubMed  Google Scholar 

  138. Van der Putten W, Kowalchuk G, Brinkman E, Doodeman G, Van der Kaaij R, Kamp A, Menting F, Veenendaal E (2007) Soil feedback of exotic savanna grass relates to pathogen absence and mycorrhizal selectivity. Ecology 88:978–988

    Article  PubMed  Google Scholar 

  139. Meyer ST, Koch C, Weisser WW (2015) Towards a standardized rapid ecosystem function assessment (REFA). Trends Ecol Evol 30:390–397

    Article  PubMed  Google Scholar 

  140. Kardol P, Wardle DA (2010) How understanding aboveground–belowground linkages can assist restoration ecology. Trends Ecol Evol 25:670–679

    Article  PubMed  Google Scholar 

Download references

Funding

This research was supported by Pacific Northwest National Laboratory (PNNL). PNNL is operated by Battelle Memorial Institute for the U.S. Department of Energy under Contract No. DE-AC05-76RL01830.

Author information

Authors and Affiliations

Authors

Contributions

The authors both contributed to idea generation and writing.

Corresponding author

Correspondence to Emily B. Graham.

Ethics declarations

Ethics Approval

Not applicable.

Consent to Participate

Not applicable.

Consent for Publication

Not applicable.

Conflict of Interest

The authors declare no competing interests.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Graham, E.B., Knelman, J.E. Implications of Soil Microbial Community Assembly for Ecosystem Restoration: Patterns, Process, and Potential. Microb Ecol 85, 809–819 (2023). https://doi.org/10.1007/s00248-022-02155-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00248-022-02155-w

Keywords

Navigation