Skip to main content

Advertisement

Log in

The Ecological Differentiation of Particle-Attached and Free-Living Bacterial Communities in a Seasonal Flooding Lake—the Poyang Lake

  • Microbiology of Aquatic Systems
  • Published:
Microbial Ecology Aims and scope Submit manuscript

Abstract

Particle-attached (PA) and free-living (FL) bacterial communities play essential roles in the biogeochemical cycling of essential nutrients in aquatic environments. However, little is known about the factors that drive the differentiation of bacterial lifestyles, especially in flooding lake systems. Here we assessed the compositional and functional similarities between the FL and PA bacterial fractions in a typical flooding lake—the Poyang Lake (PYL) of China. The results revealed that PA communities had significantly different compositions and functions from FL communities in every hydrological period, and the diversity of both PA and FL communities was affected mainly by the water regime rather than bacterial lifestyles. PA communities were more diverse and enriched with Proteobacteria and Bacteroidetes, while FL communities had more Actinobacteria. There was a higher abundance of photosynthetic and nitrogen-cycling bacterial groups in PA communities, but a higher abundance of members involved in hydrocarbon degradation, aromatic hydrocarbon degradation, and methylotrophy in FL communities. Water properties (e.g., temperature, pH, total phosphorus) significantly regulated the lifestyle variations of PA and FL bacteria in PYL. Collectively, our results have demonstrated a clear ecological differentiation of PA and FL bacterial communities in flooding lakes, suggesting that the connectivity between FL and PA bacterial fractions is water property-related rather than water regime-related.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data Availability

The sequencing data generated for this study can be found in the NCBI Sequence Read Archive (SRA) (https://www.ncbi.nlm.nih.gov/sra) under BioProject ID PRJNA632434.

References

  1. McCammon SA, Bowman JP (2000) Taxonomy of Antarctic Flavobacterium species: description of Flavobacterium gillisiae sp. nov., Flavobacterium tegetincola sp. nov., and Flavobacterium xanthum sp. nov., nom. rev. and reclassification of [Flavobacterium] salegens as Salegentibacter salegens gen. nov., comb. nov. Int J Syst Evol Micr 50:1055–1063. https://doi.org/10.1099/00207713-50-3-1055

    Article  CAS  Google Scholar 

  2. Achat DL, Augusto L, Gallet-Budynek A et al (2016) Future challenges in coupled C-N–P cycle models for terrestrial ecosystems under global change: a review. Biogeochemistry 131:173–202. https://doi.org/10.1007/s10533-016-0274-9

    Article  CAS  Google Scholar 

  3. Hutchins DA, Fu F (2017) Microorganisms and ocean global change. Nat Microbiol 2:1–11. https://doi.org/10.1038/nmicrobiol.2017.58

    Article  CAS  Google Scholar 

  4. Fuhrman JA (2009) Microbial community structure and its functional implications. Nature 459:193–199. https://doi.org/10.1038/nature08058

    Article  CAS  PubMed  Google Scholar 

  5. Martin-Platero AM, Cleary B, Kauffman K et al (2018) High resolution time series reveals cohesive but short-lived communities in coastal plankton. Nat Commun 9:1–11. https://doi.org/10.1038/s41467-017-02571-4

    Article  CAS  Google Scholar 

  6. Zhao M, Ma Y, He S et al (2020) Dynamics of bacterioplankton community structure in response to seasonal hydrological disturbances in Poyang Lake, the largest wetland in China. FEMS Microbiol Ecol 96(8):fiaa064. https://doi.org/10.1093/femsec/fiaa064

  7. Ortega-Retuerta E, Joux F, Jeffrey WH et al (2013) Spatial variability of particle-attached and free-living bacterial diversity in surface waters from the Mackenzie River to the Beaufort Sea (Canadian Arctic). Biogeosciences 10:2747–2759. https://doi.org/10.5194/bg-10-2747-2013

    Article  Google Scholar 

  8. Liu Y, Lin Q, Feng J et al (2020) Differences in metabolic potential between particle-associated and free-living bacteria along Pearl River Estuary. Sci Total Environ 728:138856. https://doi.org/10.1016/j.scitotenv.2020.138856

    Article  CAS  PubMed  Google Scholar 

  9. Xu H, Zhao D, Zeng J et al (2020) Distinct successional patterns and processes of free-living and particle-attached bacterial communities throughout a phytoplankton bloom. Freshwater Biol 65:1363–1375. https://doi.org/10.1111/fwb.13505

    Article  Google Scholar 

  10. Zhao D, Gao P, Xu L et al (2021) Disproportionate responses between free-living and particle-attached bacteria during the transition to oxygen-deficient zones in the Bohai seawater. Sci Total Environ 791:148097. https://doi.org/10.1016/j.scitotenv.2021.148097

    Article  CAS  PubMed  Google Scholar 

  11. Grossart HP (2010) Ecological consequences of bacterioplankton lifestyles: changes in concepts are needed. Env Microbiol Rep 2:706–714. https://doi.org/10.1111/j.1758-2229.2010.00179.x

    Article  Google Scholar 

  12. Liu X, Pan J, Liu Y et al (2018) Diversity and distribution of Archaea in global estuarine ecosystems. Sci Total Environ 637–638:349–358. https://doi.org/10.1016/j.scitotenv.2018.05.016

    Article  CAS  PubMed  Google Scholar 

  13. Borrego C, Sabater S, Proia L (2020) Lifestyle preferences drive the structure and diversity of bacterial and archaeal communities in a small riverine reservoir. Sci Rep 10:1–13. https://doi.org/10.1038/s41598-020-67774-0

    Article  CAS  Google Scholar 

  14. Tang X, Chao J, Gong Y et al (2017) Spatiotemporal dynamics of bacterial community composition in large shallow eutrophic Lake Taihu: high overlap between free-living and particle-attached assemblages. Limnol Oceanogr 62:1366–1382. https://doi.org/10.1002/lno.10502

    Article  CAS  Google Scholar 

  15. Hu Y, Xie G, Jiang X et al (2020) The relationships between the free-living and particle-attached bacterial communities in response to elevated eutrophication. Front Microbiol 11:423. https://doi.org/10.3389/fmicb.2020.00423

    Article  PubMed  PubMed Central  Google Scholar 

  16. Ghosh A, Bhadury P (2019) Exploring biogeographic patterns of bacterioplankton communities across global estuaries. MicrobiologyOpen 8:e741. https://doi.org/10.1002/mbo3.741

    Article  Google Scholar 

  17. Crump BC, Armbrust EV, Baross JA (1999) Phylogenetic analysis of particle-attached and free-living bacterial communities in the Columbia River, its estuary, and the adjacent coastal ocean. Appl Environ Microbiol 65:3192–3204. https://doi.org/10.1128/AEM.65.7.3192-3204.1999

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Yang C, Wang Q, Simon PN et al (2017) Distinct network interactions in particle-associated and free-living bacterial communities during a Microcystis aeruginosa bloom in a plateau lake. Front Microbiol 8:1202. https://doi.org/10.3389/fmicb.2017.01202

    Article  PubMed  PubMed Central  Google Scholar 

  19. Liu K, Hou J, Liu Y et al (2019) Biogeography of the free-living and particle-attached bacteria in Tibetan lakes. FEMS Microbiol Ecol 95(7):fiz088. https://doi.org/10.1093/femsec/fiz088

  20. Jain A, Krishnan KP, Singh A et al (2019) Biochemical composition of particles shape particle-attached bacterial community structure in a high Arctic fjord. Ecol Indic 102:581–592. https://doi.org/10.1016/j.ecolind.2019.03.015

    Article  CAS  Google Scholar 

  21. Rosenberg DR, Haber M, Goldford J et al (2020) Particle-associated and free-living bacterial communities in an oligotrophic sea are affected by different environmental and anthropogenic factors. Environ Microbiol 23(8):4295–4308. https://doi.org/10.1111/1462-2920.15611

    Article  CAS  Google Scholar 

  22. Zhang Y, Jing H, Peng X (2020) Vertical shifts of particle-attached and free-living prokaryotes in the water column above the cold seeps of the South China Sea. Mar Pollut Bull 156:111230. https://doi.org/10.1016/j.marpolbul.2020.111230

    Article  CAS  PubMed  Google Scholar 

  23. Liu M, Liu L, Chen H et al (2019) Community dynamics of free-living and particle-attached bacteria following a reservoir Microcystis bloom. Sci Total Environ 660:501–511. https://doi.org/10.1016/j.scitotenv.2018.12.414

    Article  CAS  PubMed  Google Scholar 

  24. Simon M, Grossart HP, Schweitzer B et al (2002) Microbial ecology of organic aggregates in aquatic ecosystems. Aquat Microb Ecol 28:175–211. https://doi.org/10.1016/j.scitotenv.2018.12.414

    Article  CAS  Google Scholar 

  25. Reza MS, Kobiyama A, Yamada Y et al (2018) Basin-scale seasonal changes in marine free-living bacterioplankton community in the Ofunato Bay. Gene 665:185–191. https://doi.org/10.1016/j.gene.2018.04.074

    Article  CAS  PubMed  Google Scholar 

  26. Wang H, Zhu R, Zhang X et al (2019) Abiotic environmental factors override phytoplankton succession in shaping both free-living and attached bacterial communities in a highland lake. AMB Express 9:1–13. https://doi.org/10.1186/s13568-019-0889-z

    Article  CAS  Google Scholar 

  27. Smith MW, Zeigler AL, Allen AE et al (2013) Contrasting genomic properties of free-living and particle-attached microbial assemblages within a coastal ecosystem. Front Microbiol 4:120. https://doi.org/10.3389/fmicb.2013.00120

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Bachmann J, Heimbach T, Hassenrück C et al (2018) Environmental drivers of free-living vs. particle-attached bacterial community composition in the Mauritania upwelling system. Front Microbiol 9:2836. https://doi.org/10.3389/fmicb.2018.02836

  29. Hollibaugh JT, Wong PS, Murrell MC (2000) Similarity of particle-associated and free-living bacterial communities in northern San Francisco Bay, California. Aquat Microb Ecol 21:103–114. https://doi.org/10.3354/ame021103

    Article  Google Scholar 

  30. Crespo BG, Pommier T, Fernández-Gómez B et al (2013) Taxonomic composition of the particle-attached and free-living bacterial assemblages in the Northwest Mediterranean Sea analyzed by pyrosequencing of the 16S rRNA. Microbiologyopen 2:541–552. https://doi.org/10.1002/mbo3.92

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Tang X, Li L, Shao K et al (2015) Pyrosequencing analysis of free-living and attached bacterial communities in Meiliang Bay, Lake Taihu, a large eutrophic shallow lake in China. Can J Microbiol 61:22–31. https://doi.org/10.1139/cjm-2014-0503

    Article  CAS  PubMed  Google Scholar 

  32. Qin B, Zhou J, Elser JJ et al (2020) Water depth underpins the relative roles and fates of nitrogen and phosphorus in lakes. Environ Sci Technol 54(6):3191–3198. https://doi.org/10.1021/acs.est.9b05858

    Article  CAS  PubMed  Google Scholar 

  33. Woolway RI, Kraemer BM, Lenters JD et al (2020) Global lake responses to climate change. Nat Rev Earth Environ 1:388–403. https://doi.org/10.1038/s43017-020-0067-5

    Article  Google Scholar 

  34. Dang H, Lovell CR (2016) Microbial surface colonization and biofilm development in marine environments. Microbiol Mol Biol R 80:91–138. https://doi.org/10.1128/MMBR.00037-15

    Article  CAS  Google Scholar 

  35. Gomez-Consarnau L, Needham DM, Weber PK et al (2019) Influence of light on particulate organic matter utilization by attached and free-living marine bacteria. Front Microbiol 10:1204. https://doi.org/10.1101/537415

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Li B, Yang G, Wan R (2020) Multidecadal water quality deterioration in the largest freshwater lake in China (Poyang Lake): implications on eutrophication management. Environ Pollut 260:114033. https://doi.org/10.1016/j.envpol.2020.114033

    Article  CAS  PubMed  Google Scholar 

  37. Wang Y, Molinos JG, Shi L et al (2019) Drivers and changes of the Poyang Lake wetland ecosystem. Wetlands 39:35–44. https://doi.org/10.1007/s13157-019-01180-9

    Article  Google Scholar 

  38. Yao J, Zhang Q, Ye X et al (2018) Quantifying the impact of bathymetric changes on the hydrological regimes in a large floodplain lake: Poyang Lake. J Hydrol 561:711–723. https://doi.org/10.1016/j.jhydrol.2018.04.035

    Article  Google Scholar 

  39. Liu J, Fang S, Sun J (2016) Nutrient zoning of Poyang Lake based on aquatic eco-environment indices. Environ Earth Sci 75:1–12. https://doi.org/10.1007/s12665-015-4904-7

    Article  Google Scholar 

  40. Ye X, Xu CY, Zhang Q et al (2018) Quantifying the human induced water level decline of China’s largest freshwater lake from the changing underlying surface in the lake region. Water Resour Manag 32:1467–1482. https://doi.org/10.1007/s11269-017-1881-5

    Article  Google Scholar 

  41. Umer A, Assefa B, Fito J (2020) Spatial and seasonal variation of lake water quality: beseka in the Rift Valley of Oromia region, Ethiopia. Int J Energ Water R 4:47–54. https://doi.org/10.1007/s42108-019-00050-8

    Article  Google Scholar 

  42. APHA (2005) Standard methods for the examination of water and wastewater. American Public Health Association, Washington, DC, USA

    Google Scholar 

  43. Sutherland KM, Grabb KC, Karolewski JS et al (2020) Spatial heterogeneity in particle-associated, light-independent superoxide production within productive coastal waters. J Geophys Res-Oceans 125(10):e2020JC016747. https://doi.org/10.1029/2020JC016747

  44. Zhao D, Xu H, Zeng J et al (2017) Community composition and assembly processes of the free-living and particle-attached bacteria in Taihu Lake. FEMS Microbiol Ecol 93(6):fix062. https://doi.org/10.1093/femsec/fix062.

  45. Jin X, Ma Y, Kong Z et al (2019) The variation of sediment bacterial community in response to anthropogenic disturbances of Poyang Lake, China. Wetlands 39:63–73. https://doi.org/10.1007/s13157-017-0909-1

    Article  Google Scholar 

  46. Zheng H, Yang T, Bao Y et al (2021) Network analysis and subsequent culturing reveal keystone taxa involved in microbial litter decomposition dynamics. Soil Biol Biochem 157:108230. https://doi.org/10.1016/j.soilbio.2021.108230

    Article  CAS  Google Scholar 

  47. Sun W, Krumins V, Dong Y et al (2018) A combination of stable isotope probing, Illumina sequencing, and co-occurrence network to investigate thermophilic acetate-and lactate-utilizing bacteria. Microb Ecol 75:113–122. https://doi.org/10.1007/s00248-017-1017-8

    Article  CAS  PubMed  Google Scholar 

  48. Banerjee S, Kirkby CA, Schmutter D et al (2016) Network analysis reveals functional redundancy and keystone taxa among bacterial and fungal communities during organic matter decomposition in an arable soil. Soil Biol Biochem 97:188–198. https://doi.org/10.1016/j.soilbio.2016.03.017

    Article  CAS  Google Scholar 

  49. Shannon P, Markiel A, Ozier O et al (2003) Cytoscape: a software environment for integrated models of biomolecular interaction networks. Genome Res 13:2498–2504. https://doi.org/10.1101/gr.1239303

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Zhu C, Zhang J, Nawaz MZ et al (2019) Seasonal succession and spatial distribution of bacterial community structure in a eutrophic freshwater Lake, Lake Taihu. Sci Total Environ 669:29–40. https://doi.org/10.1016/j.scitotenv.2019.03.087

    Article  CAS  PubMed  Google Scholar 

  51. Wickham H (2009) GGplot2: elegant graphics for data analysis. Springer, New York

    Book  Google Scholar 

  52. Chen H, Boutros PC (2011) VennDiagram: a package for the generation of highly-customizable Venn and Euler diagrams in R. BMC Bioinformatics 12:1–7. https://doi.org/10.1186/1471-2105-12-35

    Article  CAS  Google Scholar 

  53. Louca S, Parfrey LW, Doebeli M (2016) Decoupling function and taxonomy in the global ocean microbiome. Science 353:1272–1277. https://doi.org/10.1126/science.aaf4507

    Article  CAS  PubMed  Google Scholar 

  54. Epskamp S, Cramer AO, Waldorp LJ et al (2012) qgraph: network visualizations of relationships in psychometric data. J Stat Softw 48:1–18. https://doi.org/10.18637/jss.v048.i04

    Article  Google Scholar 

  55. Watson-Haigh NS, Kadarmideen HN, Reverter A (2010) PCIT: an R package for weighted gene co-expression networks based on partial correlation and information theory approaches. Bioinformatics 26:411–413. https://doi.org/10.1093/bioinformatics/btp674

    Article  CAS  PubMed  Google Scholar 

  56. Christensen AP (2018) NetworkToolbox: methods and measures for brain, cognitive, and psychometric network analysis in R. R Journal 10:422–439. https://doi.org/10.32614/RJ-2018-065

    Article  Google Scholar 

  57. Chebykin E, Goldberg E, Kulikova N (2010) Elemental composition of suspended particles from the surface waters of Lake Baikal in the zone affected by the Selenga River. Russ Geol Geophys 51:1126–1132. https://doi.org/10.1016/j.rgg.2010.09.004

    Article  Google Scholar 

  58. Nowicki CJ, Bunnell DB, Armenio PM et al (2017) Biotic and abiotic factors influencing zooplankton vertical distribution in Lake Huron. J Great Lakes Res 43:1044–1054. https://doi.org/10.1016/j.jglr.2017.08.004

    Article  Google Scholar 

  59. Zhang Y, Zhou Y, Shi K et al (2018) Optical properties and composition changes in chromophoric dissolved organic matter along trophic gradients: implications for monitoring and assessing lake eutrophication. Water Res 131:255–263. https://doi.org/10.1016/j.watres.2017.12.051

    Article  CAS  PubMed  Google Scholar 

  60. Brezonik PL, Bouchard JRW, Finlay JC et al (2019) Color, chlorophyll a, and suspended solids effects on Secchi depth in lakes: implications for trophic state assessment. Ecol Appl 29:e01871. https://doi.org/10.1002/eap.1871

    Article  PubMed  Google Scholar 

  61. Wang J, Chen G, Kang W et al (2019) Impoundment intensity determines temporal patterns of hydrological fluctuation, carbon cycling and algal succession in a dammed lake of Southwest China. Water Res 148:162–175. https://doi.org/10.1016/j.watres.2018.10.032

    Article  CAS  PubMed  Google Scholar 

  62. Perwira I, Ulinuha D, Al Zamzami I et al (2020) Environmental factors associated with decomposition of organic materials and nutrients availability in the water and sediment of Setail River, Banyuwangi, Indonesia. IOP Conference Series: Earth Environ Sci 493(2020):012025. https://doi.org/10.1088/1755-1315/493/1/012025

    Article  Google Scholar 

  63. Staley C, Unno T, Gould T et al (2013) Application of Illumina next-generation sequencing to characterize the bacterial community of the Upper Mississippi River. J Appl Microbiol 115:1147–1158. https://doi.org/10.1111/jam.12323

    Article  CAS  PubMed  Google Scholar 

  64. Cao Z, Duan H, Feng L et al (2017) Climate- and human-induced changes in suspended particulate matter over Lake Hongze on short and long timescales. Remote Sens Environ 192:98–113. https://doi.org/10.1016/j.rse.2017.02.007

    Article  Google Scholar 

  65. Liu R, Wang L, Liu Q et al (2018) Depth-resolved distribution of particle-attached and free-living bacterial communities in the water column of the New Britain Trench. Front Microbiol 9:625. https://doi.org/10.3389/fmicb.2018.00625

    Article  PubMed  PubMed Central  Google Scholar 

  66. Xing W, Li J, Li D et al (2018) Stable-isotope probing reveals the activity and function of autotrophic and heterotrophic denitrifiers in nitrate removal from organic-limited wastewater. Environ Sci Technol 52:7867–7875. https://doi.org/10.1021/acs.est.8b01993

    Article  CAS  PubMed  Google Scholar 

  67. Pheng S, Lee JJ, Eom MK et al (2017) Paucibacter oligotrophus sp. nov., isolated from fresh water, and emended description of the genus Paucibacter. Int J Syst Evol Micr 67:2231–2235. https://doi.org/10.1099/ijsem.0.001931

    Article  CAS  Google Scholar 

  68. Bernardet JF, Bowman JP (2006) The genus Flavobacterium. The prokaryotes: a Handbook on the Biology of Bacteria. Springer, New York, pp 481–531

    Chapter  Google Scholar 

  69. Grimm C, Martinez RE, Pokrovsky OS et al (2019) Enhancement of cyanobacterial growth by riverine particulate material. Chem Geol 525:143–167. https://doi.org/10.1016/j.chemgeo.2019.06.012

    Article  CAS  Google Scholar 

  70. Mills MM, Ridame C, Davey M et al (2004) Iron and phosphorus co-limit nitrogen fixation in the eastern tropical North Atlantic. Nature 429:292–294. https://doi.org/10.1038/nature02550

    Article  CAS  PubMed  Google Scholar 

  71. Jickells T, An Z, Andersen KK et al (2005) Global iron connections between desert dust, ocean biogeochemistry, and climate. Science 308:67–71. https://doi.org/10.1126/science.1105959

    Article  CAS  PubMed  Google Scholar 

  72. Zhu W, Wang C, Hill J et al (2018) A missing link in the estuarine nitrogen cycle?: Coupled nitrification-denitrification mediated by suspended particulate matter. Sci Rep 8:1–10. https://doi.org/10.1038/s41598-018-20688-4

    Article  CAS  Google Scholar 

  73. Dedysh SN, Damsté JSS (2018) Acidobacteria. eLS. Chichester, UK: John Wiley & Sons, Ltd, 10(9780470015902), a0027685. https://doi.org/10.1002/9780470015902.a0027685

  74. Kirchman DL, Dittel AI, Findlay SE et al (2004) Changes in bacterial activity and community structure in response to dissolved organic matter in the Hudson River, New York. Aquat Microb Ecol 35:243–257. https://doi.org/10.3354/ame035243

    Article  Google Scholar 

  75. Pérez MT, Rofner C, Sommaruga R (2015) Dissolved organic monomer partitioning among bacterial groups in two oligotrophic lakes. Env Microbiol Rep 7:265–272. https://doi.org/10.1111/1758-2229.12240

    Article  CAS  Google Scholar 

  76. Fuerst JA (2017) Planctomycetes—new models for microbial cells and activities In: Microbial Resources, Academic Press. https://doi.org/10.1016/B978-0-12-804765-1.00001-1

  77. Keshri J, Ram AP, Nana P et al (2018) Taxonomical resolution and distribution of bacterioplankton along the vertical gradient reveals pronounced spatiotemporal patterns in contrasted temperate freshwater lakes. Microb Ecol 76:372–386. https://doi.org/10.1007/s00248-018-1143-y

    Article  CAS  PubMed  Google Scholar 

  78. Ávila MP, Brandão LP, Brighenti LS et al (2019) Linking shifts in bacterial community with changes in dissolved organic matter pool in a tropical lake. Sci Total Environ 672:990–1003. https://doi.org/10.1016/j.scitotenv.2019.04.033

    Article  CAS  PubMed  Google Scholar 

  79. Bižić-Ionescu M, Zeder M, Ionescu D et al (2015) Comparison of bacterial communities on limnic versus coastal marine particles reveals profound differences in colonization. Environ Microbiol 17:3500–3514. https://doi.org/10.1111/1462-2920.12466

    Article  CAS  PubMed  Google Scholar 

  80. Chu Y, Li J, Jiang W et al (2008) Monitoring level fluctuations of the lakes in the Yangtze River basin from radar altimetry. Terr Atmos Ocean Sci 19:63–70. https://doi.org/10.3319/TAO.2008.19.1-2.63(SA)

    Article  Google Scholar 

  81. Liu X, Teubner K, Chen Y (2016) Water quality characteristics of Poyang Lake, China, in response to changes in the water level. Hydrol Res 47:238–248. https://doi.org/10.2166/nh.2016.209

    Article  CAS  Google Scholar 

  82. Deng X, Xu Y, Han L et al (2018) Spatial-temporal changes in the longitudinal functional connectivity of river systems in the Taihu Plain, China. J Hydrol 566:846–859. https://doi.org/10.1016/j.jhydrol.2018.09.060

    Article  Google Scholar 

  83. Bertilsson S, Eiler A, Nordqvist A et al (2007) Links between bacterial production, amino-acid utilization and community composition in productive lakes. ISME J 1:532–544. https://doi.org/10.1038/ismej.2007.64

    Article  CAS  PubMed  Google Scholar 

  84. Comte J, Del Giorgio PA (2009) Links between resources, C metabolism and the major components of bacterioplankton community structure across a range of freshwater ecosystems. Environ Microbiol 11:1704–1716. https://doi.org/10.1111/j.1462-2920.2009.01897.x

    Article  CAS  PubMed  Google Scholar 

  85. Stein, LY, Roy, R. and Dunfield, PF (2012). Aerobic Methanotrophy and Nitrification: Processes and Connections. In eLS, (Ed). https://doi.org/10.1002/9780470015902.a0022213

  86. Tolotti M, Cerasino L, Donati C et al (2020) Alpine headwaters emerging from glaciers and rock glaciers host different bacterial communities: ecological implications for the future. Sci Total Environ 717:137101. https://doi.org/10.1016/j.scitotenv.2020.137101

    Article  CAS  PubMed  Google Scholar 

  87. Poretsky R, Rodriguez-R LM, Luo C et al (2014) Strengths and limitations of 16S rRNA gene amplicon sequencing in revealing temporal microbial community dynamics. PLoS ONE 9:e93827. https://doi.org/10.1371/journal.pone.0093827

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Staley C, Gould TJ, Wang P et al (2015) Species sorting and seasonal dynamics primarily shape bacterial communities in the Upper Mississippi River. Sci Total Environ 505:435–445. https://doi.org/10.1016/j.scitotenv.2014.10.012

    Article  CAS  PubMed  Google Scholar 

  89. Kent AD, Jones S, Yannarell A et al (2004) Annual patterns in bacterioplankton community variability in a humic lake. Microb Ecol 48:550–560. https://doi.org/10.1007/s00248-004-0244-y

    Article  CAS  PubMed  Google Scholar 

  90. Crump BC, Hobbie JE (2005) Synchrony and seasonality in bacterioplankton communities of two temperate rivers. Limnol Oceanogr 50:1718–1729. https://doi.org/10.4319/lo.2005.50.6.1718

    Article  CAS  Google Scholar 

  91. Lehmann MF, Bernasconi SM, McKenzie JA et al (2004) Seasonal variation of the δC and δN of particulate and dissolved carbon and nitrogen in Lake Lugano: Constraints on biogeochemical cycling in a eutrophic lake. Limnol Oceanogr 49:415–429. https://doi.org/10.4319/lo.2004.49.2.0415

    Article  CAS  Google Scholar 

  92. Xia X, Zhang S, Li S et al (2018) The cycle of nitrogen in river systems: sources, transformation, and flux. Environl Sci-Proc Imp 20:863–891. https://doi.org/10.1039/C8EM00042E

    Article  CAS  Google Scholar 

  93. Aldunate M, De la Iglesia R, Bertagnolli AD et al (2018) Oxygen modulates bacterial community composition in the coastal upwelling waters off central Chile. Deep-Sea Res Pt II 156:68–79. https://doi.org/10.1016/j.dsr2.2018.02.001

    Article  CAS  Google Scholar 

  94. Mohiuddin MM, Botts SR, Paschos A et al (2019) Temporal and spatial changes in bacterial diversity in mixed use watersheds of the Great Lakes region. J Great Lakes Res 45:109–118. https://doi.org/10.1016/j.jglr.2018.10.007

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank Dr. Yajun Liu, Dr. Xingzhi Duan, and Dr. Zhaoyu Kong for their help with lab work and writing.

Funding

This work was supported by the National Natural Science Foundation of China (grant no. 31660027; 31971470; 31560143), the National Water Pollution Control and Treatment Science and Technology Major Project (2017ZX07301002-05), and the Natural Science Foundation of Jiangxi Province (20202BAB203025; 20192ACB20021; 20192BAB203023).

Author information

Authors and Affiliations

Authors

Contributions

YM, XM, and LW conceived the study. YM, PL, and BW conducted fieldwork and collected samples. YM, MH, and HZ performed the data analyses. YM and PL wrote the manuscript. All authors critically reviewed the manuscript, contributed to writing, and read and approved the submitted version.

Corresponding author

Correspondence to Lan Wu.

Ethics declarations

Ethics Statement

Ethical review and approval were not required for this study in accordance with the local legislation and institutional requirements.

Conflict of Interest

The authors declare no competing interests.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOC 5321 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ma, Y., Li, P., Zhong, H. et al. The Ecological Differentiation of Particle-Attached and Free-Living Bacterial Communities in a Seasonal Flooding Lake—the Poyang Lake. Microb Ecol 86, 795–809 (2023). https://doi.org/10.1007/s00248-022-02134-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00248-022-02134-1

Keywords

Navigation