Dillon RJ, Dillon VM (2004) The gut bacteria of insects: nonpathogenic interactions. Annu Rev Entomol 49:71–92. https://doi.org/10.1146/annurev.ento.49.061802.123416
CAS
Article
PubMed
Google Scholar
Fraune S, Bosch TC (2010) Why bacteria matter in animal development and evolution. BioEssays 32:571–580. https://doi.org/10.1002/bies.200900192
CAS
Article
PubMed
Google Scholar
Chevalier C, Stojanovic O, Colin DJ, Suarez-Zamorano N, Tarallo V, Veyrat-Durebex C, Rigo D, Fabbiano S, Stevanovic A, Hagemann S, Montet X, Seimbille Y, Zamboni N, Hapfelmeier S, Trajkovski M (2015) Gut Microbiota Orchestrates Energy Homeostasis during Cold. Cell 163:1360–1374. https://doi.org/10.1016/j.cell.2015.11.004
CAS
Article
PubMed
Google Scholar
Buffie CG, Pamer EG (2013) Microbiota-mediated colonization resistance against intestinal pathogens. Nat Rev Immunol 13:790–801. https://doi.org/10.1038/nri3535
CAS
Article
PubMed
PubMed Central
Google Scholar
Alberdi A, Aizpurua O, Bohmann K, Zepeda-Mendoza ML, Gilbert MTP (2016) Do Vertebrate Gut Metagenomes Confer Rapid Ecological Adaptation? Trends Ecol Evol 31:689–699. https://doi.org/10.1016/j.tree.2016.06.008
Article
PubMed
Google Scholar
Shapira M (2016) Gut Microbiotas and Host Evolution: Scaling Up Symbiosis. Trends Ecol Evol 31:539–549. https://doi.org/10.1016/j.tree.2016.03.006
Article
PubMed
Google Scholar
Funkhouser LJ, Bordenstein SR (2013) Mom knows best: the universality of maternal microbial transmission. PLoS Biol 11:e1001631. https://doi.org/10.1371/journal.pbio.1001631
CAS
Article
PubMed
PubMed Central
Google Scholar
Shukla SP, Vogel H, Heckel DG, Vilcinskas A, Kaltenpoth M (2018) Burying beetles regulate the microbiome of carcasses and use it to transmit a core microbiota to their offspring. Mol Ecol 27:1980–1991. https://doi.org/10.1111/mec.14269
Article
PubMed
Google Scholar
Bodawatta KH, Hird SM, Grond K, Poulsen M, Jonsson KA (2021) Avian gut microbiomes taking flight. Trends Microbiolhttps://doi.org/10.1016/j.tim.2021.07.003
O'Brien PA, Webster NS, Miller DJ, Bourne DG (2019) Host-Microbe Coevolution: Applying Evidence from Model Systems to Complex Marine Invertebrate Holobionts. Am SocMicrobiol 10https://doi.org/10.1128/mBio
Spor A, Koren O, Ley R (2011) Unravelling the effects of the environment and host genotype on the gut microbiome. Nat Rev Microbiol 9:279–290. https://doi.org/10.1038/nrmicro2540
CAS
Article
PubMed
Google Scholar
Bonder MJ, Kurilshikov A, Tigchelaar EF, Mujagic Z, Imhann F, Vila AV, Deelen P, Vatanen T, Schirmer M, Smeekens SP, Zhernakova DV, Jankipersadsing SA, Jaeger M, Oosting M, Cenit MC, Masclee AA, Swertz MA, Li Y, Kumar V, Joosten L, Harmsen H, Weersma RK, Franke L, Hofker MH, Xavier RJ, Jonkers D, Netea MG, Wijmenga C, Fu J, Zhernakova A (2016) The effect of host genetics on the gut microbiome. Nat Genet 48:1407–1412. https://doi.org/10.1038/ng.3663
CAS
Article
PubMed
Google Scholar
Allan ERO, Tennessen JA, Sharpton TJ, Blouin MS (2018) Allelic Variation in a Single Genomic Region Alters the Microbiome of the Snail Biomphalaria glabrata. J Hered 109:604–609. https://doi.org/10.1093/jhered/esy014
CAS
Article
PubMed
PubMed Central
Google Scholar
Douglas AE (2019) Simple animal models for microbiome research. Nat Rev Microbiol 17:764–775. https://doi.org/10.1038/s41579-019-0242-1
CAS
Article
PubMed
Google Scholar
Akbar S, Gu L, Sun Y, Zhang L, Lyu K, Huang Y, Yang Z (2021) Understanding host-microbiome-environment interactions: Insights from Daphnia as a model organism. Sci Total Environ 152093https://doi.org/10.1016/j.scitotenv.2021.152093
Callens M, Macke E, Muylaert K, Bossier P, Lievens B, Waud M, Decaestecker E (2016) Food availability affects the strength of mutualistic host-microbiota interactions in Daphnia magna. ISME J 10:911–920. https://doi.org/10.1038/ismej.2015.166
Article
PubMed
Google Scholar
Macke E, Callens M, De Meester L, Decaestecker E (2017) Host-genotype dependent gut microbiota drives zooplankton tolerance to toxic cyanobacteria. Nat Commun 8:1608. https://doi.org/10.1038/s41467-017-01714-x
CAS
Article
PubMed
PubMed Central
Google Scholar
Houwenhuyse S, Stoks R, Mukherjee S, Decaestecker E (2021) Locally adapted gut microbiomes mediate host stress tolerance. ISME Jhttps://doi.org/10.1038/s41396-021-00940-y
Mushegian AA, Burcklen E, Schar TM, Ebert D (2016) Temperature-dependent benefits of bacterial exposure in embryonic development of Daphnia magna resting eggs. J Experimental Biology 219:897–904. https://doi.org/10.1242/jeb.134759
Article
Google Scholar
Peerakietkhajorn S, Tsukada K, Kato Y, Matsuura T, Watanabe H (2015) Symbiotic bacteria contribute to increasing the population size of a freshwater crustacean, Daphnia magna. Environ Microbiol Rep 7:364–372. https://doi.org/10.1111/1758-2229.12260
CAS
Article
PubMed
Google Scholar
Callens M, Watanabe H, Kato Y, Miura J, Decaestecker E (2018) Microbiota inoculum composition affects holobiont assembly and host growth in Daphnia. Microbiome 6:56. https://doi.org/10.1186/s40168-018-0444-1
Article
PubMed
PubMed Central
Google Scholar
Callens M, De Meester L, Muylaert K, Mukherjee S, Decaestecker E (2020) The bacterioplankton community composition and a host genotype dependent occurrence of taxa shape the Daphnia magna gut bacterial community. FEMS Microbiology Ecology 96 https://doi.org/10.1093/femsec/fiaa128
Frankel-Bricker J, Song MJ, Benner MJ, Schaack S (2020) Variation in the Microbiota Associated with Daphnia magna Across Genotypes, Populations, and Temperature. Microb Ecol 79:731–742. https://doi.org/10.1007/s00248-019-01412-9
CAS
Article
PubMed
Google Scholar
Hegg A, Radersma R, Uller T (2021) A field experiment reveals seasonal variation in the Daphnia gut microbiome. Oikos 130:2191–2201. https://doi.org/10.1111/oik.08530
CAS
Article
Google Scholar
Sullam KE, Pichon S, Schaer TMM, Ebert D (2018) The Combined Effect of Temperature and Host Clonal Line on the Microbiota of a Planktonic Crustacean. Microb Ecol 76:506–517. https://doi.org/10.1007/s00248-017-1126-4
CAS
Article
PubMed
Google Scholar
Macke E, Callens M, Massol F, Vanoverberghe I, De Meester L, Decaestecker E (2020) Diet and Genotype of an Aquatic Invertebrate Affect the Composition of Free-Living Microbial Communities. Front Microbiol 11:380. https://doi.org/10.3389/fmicb.2020.00380
Article
PubMed
PubMed Central
Google Scholar
Brede N, Sandrock C, Straile D, Spaak P, Jankowski T, Streit B, Schwenk K (2009) The impact of human-made ecological changes on the genetic architecture of Daphnia species. PNAS 106:4758–4763
CAS
Article
Google Scholar
Eckert EM, Pernthaler J (2014) Bacterial epibionts of Daphnia: a potential route for the transfer of dissolved organic carbon in freshwater food webs. ISME J 8:1808–1819. https://doi.org/10.1038/ismej.2014.39
CAS
Article
PubMed
PubMed Central
Google Scholar
Dennis SR, Hänggi C, Giulio M, Möst M, Spaak P (2022) Daphnia galeata genomic variants - resurrected clones from Greifensee. . https://doi.org/10.25678/0005KZ
Monchamp ME, Walser JC, Pomati F, Spaak P (2016) Sedimentary DNA Reveals Cyanobacterial Community Diversity over 200 Years in Two Perialpine Lakes. Appl Environ Microbiol 82:6472–6482. https://doi.org/10.1128/AEM.02174-16
CAS
Article
PubMed
PubMed Central
Google Scholar
Guillard RRL (1975) Culture of Phytoplankton for Feeding Marine Invertebrates. In: Smith WL, Chanley MH (eds) Culture of Marine Invertebrate Animals: Proceedings — 1st Conference on Culture of Marine Invertebrate Animals Greenport. Springer, US, Boston, MA, pp 29–60
Chapter
Google Scholar
Hinlo R, Gleeson D, Lintermans M, Furlan E (2017) Methods to maximise recovery of environmental DNA from water samples. PLoS ONE 12:e0179251. https://doi.org/10.1371/journal.pone.0179251
CAS
Article
PubMed
PubMed Central
Google Scholar
Klindworth A, Pruesse E, Schweer T, Peplies J, Quast C, Horn M, Glockner FO (2013) Evaluation of general 16S ribosomal RNA gene PCR primers for classical and next-generation sequencing-based diversity studies. Nucleic Acids Res 41:e1. https://doi.org/10.1093/nar/gks808
CAS
Article
PubMed
Google Scholar
Zeng YH, Koblizek M, Li YX, Liu YP, Feng FY, Ji JD, Jian JC, Wu ZH (2013) Long PCR-RFLP of 16S-ITS-23S rRNA genes: a high-resolution molecular tool for bacterial genotyping. J Appl Microbiol 114:433–447. https://doi.org/10.1111/jam.12057
CAS
Article
PubMed
Google Scholar
Edgar RC (2013) UPARSE: highly accurate OTU sequences from microbial amplicon reads. Nat Methods 10:996–998. https://doi.org/10.1038/nmeth.2604
CAS
Article
PubMed
Google Scholar
Edgar RC (2016) UNOISE2: improved error-correction for Illumina 16S and ITS amplicon sequencing. Biorxiv preprinthttps://doi.org/10.1101/081257
Edgar RC (2016) SINTAX: a simple non-Bayesian taxonomy classifier for 16S and ITS sequences. BioRxiv Preprint 074161. https://doi.org/10.1101/074161
Quast C, Pruesse E, Yilmaz P, Gerken J, Schweer T, Yarza P, Peplies J, Glockner FO (2013) The SILVA ribosomal RNA gene database project: improved data processing and web-based tools. Nucleic Acids Res 41:D590-596. https://doi.org/10.1093/nar/gks1219
CAS
Article
PubMed
Google Scholar
McMurdie PJ, Holmes S (2013) phyloseq: an R package for reproducible interactive analysis and graphics of microbiome census data. PLoS ONE 8:e61217. https://doi.org/10.1371/journal.pone.0061217
CAS
Article
PubMed
PubMed Central
Google Scholar
Dixon P (2003) VEGAN, a package of R functions for community ecology. J Veg Sci 14:927–930
Article
Google Scholar
Galili T (2015) dendextend: an R package for visualizing, adjusting and comparing trees of hierarchical clustering. Bioinformatics 31:3718–3720. https://doi.org/10.1093/bioinformatics/btv428
CAS
Article
PubMed
PubMed Central
Google Scholar
De Caceres M, Legendre P (2009) Associations between species and groups of sites: indices and statistical inference. Ecology
Love MI, Huber W, Anders S (2014) Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol 15:550. https://doi.org/10.1186/s13059-014-0550-8
CAS
Article
PubMed
PubMed Central
Google Scholar
Smith CC, Snowberg LK, Gregory Caporaso J, Knight R, Bolnick DI (2015) Dietary input of microbes and host genetic variation shape among-population differences in stickleback gut microbiota. ISME J 9:2515–2526. https://doi.org/10.1038/ismej.2015.64
CAS
Article
PubMed
PubMed Central
Google Scholar
Diez-Vives C, Taboada S, Leiva C, Busch K, Hentschel U, Riesgo A (2020) On the way to specificity - Microbiome reflects sponge genetic cluster primarily in highly structured populations. Mol Ecol 29:4412–4427. https://doi.org/10.1111/mec.15635
CAS
Article
PubMed
PubMed Central
Google Scholar
Jones EW, Carlson JM, Sivak DA, Ludington WB (2022) Stochastic microbiome assembly depends on context. Proc Natl AcadSci U S A 119https://doi.org/10.1073/pnas.2115877119
Little AE, Robinson CJ, Peterson SB, Raffa KF, Handelsman J (2008) Rules of engagement: interspecies interactions that regulate microbial communities. Annu Rev Microbiol 62:375–401. https://doi.org/10.1146/annurev.micro.030608.101423
CAS
Article
PubMed
Google Scholar
Burns AR, Miller E, Agarwal M, Rolig AS, Milligan-Myhre K, Seredick S, Guillemin K, Bohannan BJM (2017) Interhost dispersal alters microbiome assembly and can overwhelm host innate immunity in an experimental zebrafish model. Proc Natl Acad Sci U S A 114:11181–11186. https://doi.org/10.1073/pnas.1702511114
CAS
Article
PubMed
PubMed Central
Google Scholar
He S, Glavina del Rio T, Stevens SLR, Chan L, Tringe SG, Malmstrom RR, McMahon KD (2017) Ecophysiology of Freshwater Verrucomicrobia Inferred from Metagenome-Assembled Genomes. mSphere 2. https://doi.org/10.1128/mSphere
Dobson AJ, Chaston JM, Douglas AE (2016) The Drosophila transcriptional network is structured by microbiota. BMC Genomics 17:975. https://doi.org/10.1186/s12864-016-3307-9
CAS
Article
PubMed
PubMed Central
Google Scholar
Zhou F, Liu B, Liu X, Li Y, Wang L, Huang J, Luo G, Wang X (2021) The Impact of Microbiome and Microbiota-Derived Sodium Butyrate on Drosophila Transcriptome and Metabolome Revealed by Multi-Omics Analysis. Metabolites 11https://doi.org/10.3390/metabo11050298
Sison-Mangus MP, Mushegian AA, Ebert D (2015) Water fleas require microbiota for survival, growth and reproduction. ISME J 9:59–67. https://doi.org/10.1038/ismej.2014.116
Article
PubMed
Google Scholar
Eckert EM, Anicic N, Fontaneto D (2021) Freshwater zooplankton microbiome composition is highly flexible and strongly influenced by the environment. Mol Ecol 30:1545–1558. https://doi.org/10.1111/mec.15815
Article
PubMed
Google Scholar