Skip to main content
Log in

Geographic Scale Influences the Interactivities Between Determinism and Stochasticity in the Assembly of Sedimentary Microbial Communities on the South China Sea Shelf

  • Environmental Microbiology
  • Published:
Microbial Ecology Aims and scope Submit manuscript

Abstract

Determinism and stochasticity in microbial community composition decisions have attracted wide attention. However, there is no consensus on their interrelationships and relative importance, and the mechanism controlling the interaction between the two ecological processes remains to be revealed. The interaction of the two ecological processes on the continental shelf of the South China Sea was studied by performing 16S rRNA gene amplicon sequencing on 90 sediments at multiple depths in five sites. Three nearshore sites have higher microbial diversity than those two close to the shelf margin. Different microbial composition was observed between sites and microbial composition of nearshore sites was positively correlated with total nitrogen, total sulfur, total organic carbon, and dissolved oxygen, while that of offshore was positively correlated with total carbon, salinity, and photosynthetically active radiation. The null model test showed that the community composition among layers of the same site and between nearby sites was mainly dominated by the homogeneous selection, while that between distant sites was mainly affected by dispersal limitation, which indicates that geographic scale influences the interactivities of determinism and stochasticity. Our research indicates that the balance of these two ecological processes along the geographic scale is mainly determined by the dispersal ability of microbes and environmental heterogeneity between areas. The study provides new insights into how deterministic and stochastic processes shape microbial community composition on the continental shelf.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data Availability

The 16S rRNA gene amplicon sequences were submitted to NCBI database SRA under the project with accession PRJNA738643.

Code Availability

Not applicable.

References

  1. Ge Y, He JZ, Zhu YG, Zhang JB, Xu Z, Zhang LM, Zheng YM (2008) Differences in soil bacterial diversity: driven by contemporary disturbances or historical contingencies? ISME J 2:254–264. https://doi.org/10.1038/ismej.2008.2

    Article  CAS  Google Scholar 

  2. Stegen JC, Lin X, Konopka AE, Fredrickson JK (2012) Stochastic and deterministic assembly processes in subsurface microbial communities. ISME J 6:1653–1664. https://doi.org/10.1038/ismej.2012.22

    Article  CAS  Google Scholar 

  3. Estrada-Villegas S, DeMalach N, Martinez Ramos M, Ladwig LM, Meiners SJ, Werden LK, Schnitzer SA (2020) Review of the Symposium Determinism and Stochasticity in Ecological Succession in ESA-Louisville, 2019. Bull Ecol Soc Am 101:e01687. https://doi.org/10.1002/bes2.1687

    Article  Google Scholar 

  4. Chase JM, Myers JA (2011) Disentangling the importance of ecological niches from stochastic processes across scales. Philos Trans R Soc Lond B Biol Sci 366:2351–2363. https://doi.org/10.1098/rstb.2011.0063

    Article  Google Scholar 

  5. Wang J, Shen J, Wu Y, Tu C, Soininen J et al (2013) Phylogenetic beta diversity in bacterial assemblages across ecosystems: deterministic versus stochastic processes. ISME J 7:1310–1321. https://doi.org/10.1038/ismej.2013.30

    Article  CAS  Google Scholar 

  6. Devercelli M, Scarabotti P, Mayora G, Schneider B, Giri F (2016) Unravelling the role of determinism and stochasticity in structuring the phytoplanktonic metacommunity of the Paraná River floodplain. Hydrobiologia 764:139–156. https://doi.org/10.1007/s10750-015-2363-5

    Article  CAS  Google Scholar 

  7. Tripathi BM, Stegen JC, Kim M, Dong K, Adams JM, Lee YK (2018) Soil pH mediates the balance between stochastic and deterministic assembly of bacteria. ISME J 12:1072–1083. https://doi.org/10.1038/s41396-018-0082-4

    Article  CAS  Google Scholar 

  8. Shi Y, Li Y, Xiang X, Sun R, Yang T et al (2018) Spatial scale affects the relative role of stochasticity versus determinism in soil bacterial communities in wheat fields across the North China Plain. Microbiome 6:27. https://doi.org/10.1186/s40168-018-0409-4

    Article  Google Scholar 

  9. Stegen JC, Lin X, Fredrickson JK, Chen X, Kennedy DW et al (2013) Quantifying community assembly processes and identifying features that impose them. ISME J 7:2069–2079. https://doi.org/10.1038/ismej.2013.93

    Article  Google Scholar 

  10. Stegen JC, Lin X, Fredrickson JK, Konopka AE (2015) Estimating and mapping ecological processes influencing microbial community assembly. Front Microbiol 6:370. https://doi.org/10.3389/fmicb.2015.00370

    Article  Google Scholar 

  11. Losos JB (2008) Phylogenetic niche conservatism, phylogenetic signal and the relationship between phylogenetic relatedness and ecological similarity among species. Ecol Lett 11:995–1003. https://doi.org/10.1111/j.1461-0248.2008.01229.x

    Article  Google Scholar 

  12. Andersson AF, Riemann L, Bertilsson S (2010) Pyrosequencing reveals contrasting seasonal dynamics of taxa within Baltic Sea bacterioplankton communities. ISME J 4:171–181. https://doi.org/10.1038/ismej.2009.108

    Article  Google Scholar 

  13. Feng J, Wang C, Lei J, Yang Y, Yan Q et al (2020) Warming-induced permafrost thaw exacerbates tundra soil carbon decomposition mediated by microbial community. Microbiome 8:3. https://doi.org/10.1186/s40168-019-0778-3

    Article  CAS  Google Scholar 

  14. Head IM, Gray ND (2016) Microbial Biotechnology 2020; microbiology of fossil fuel resources. Microb Biotechnol 9:626–634. https://doi.org/10.1111/1751-7915.12396

    Article  CAS  Google Scholar 

  15. Sharma A, Gilbert JA (2018) Microbial exposure and human health. Curr Opin Microbiol 44:79–87. https://doi.org/10.1016/j.mib.2018.08.003

    Article  Google Scholar 

  16. Hernando-Amado S, Coque TM, Baquero F, Martínez JL (2019) Defining and combating antibiotic resistance from One Health and Global Health perspectives. Nat Microbiol 4:1432–1442. https://doi.org/10.1038/s41564-019-0503-9

    Article  CAS  Google Scholar 

  17. Des Marais DJ (1997) Isotopic evolution of the biogeochemical carbon cycle during the Proterozoic Eon. Org Geochem 27:185–193. https://doi.org/10.1016/S0146-6380(97)00061-2

    Article  CAS  Google Scholar 

  18. Johnson B, Goldblatt C (2015) The nitrogen budget of Earth. Earth Sci Rev 148:150–173. https://doi.org/10.1016/j.earscirev.2015.05.006

    Article  CAS  Google Scholar 

  19. Parkes RJ, Cragg B, Roussel E, Webster G, Weightman A, Sass H (2014) A review of prokaryotic populations and processes in sub-seafloor sediments, including biosphere:geosphere interactions. Mar Geol 352:409–425. https://doi.org/10.1016/j.margeo.2014.02.009

    Article  CAS  Google Scholar 

  20. Orcutt BN, Sylvan JB, Knab NJ, Edwards KJ (2011) Microbial ecology of the dark ocean above, at, and below the seafloor. Microbiol Mol Biol Rev 75:361–422. https://doi.org/10.1128/MMBR.00039-10

    Article  CAS  Google Scholar 

  21. D’Hondt S, Pockalny R, Fulfer VM, Spivack AJ (2019) Subseafloor life and its biogeochemical impacts. Nat Commun 10:3519. https://doi.org/10.1038/s41467-019-11450-z

    Article  CAS  Google Scholar 

  22. D’Hondt S, Inagaki F, Zarikian CA, Abrams LJ, Dubois N et al (2015) Presence of oxygen and aerobic communities from sea floor to basement in deep-sea sediments. Nat Geosci 8:299–304. https://doi.org/10.1038/ngeo2387

    Article  CAS  Google Scholar 

  23. Broman E, Sjostedt J, Pinhassi J, Dopson M (2017) Shifts in coastal sediment oxygenation cause pronounced changes in microbial community composition and associated metabolism. Microbiome 5:96. https://doi.org/10.1186/s40168-017-0311-5

    Article  Google Scholar 

  24. Wang K, Zou L, Lu X, Mou X (2018) Organic carbon source and salinity shape sediment bacterial composition in two China marginal seas and their major tributaries. Sci Total Environ 633:1510–1517. https://doi.org/10.1016/j.scitotenv.2018.03.295

    Article  CAS  Google Scholar 

  25. Ramírez D, Vega-Alvarado L, Taboada B, Estradas-Romero A, Soto L, Juárez K (2020) Bacterial diversity in surface sediments from the continental shelf and slope of the North West gulf of Mexico and the presence of hydrocarbon degrading bacteria. Mar Pollut Bull 150:110590. https://doi.org/10.1016/j.marpolbul.2019.110590

    Article  CAS  Google Scholar 

  26. Hamdan LJ, Coffin RB, Sikaroodi M, Greinert J, Treude T, Gillevet PM (2013) Ocean currents shape the microbiome of Arctic marine sediments. ISME J 7:685–696. https://doi.org/10.1038/ismej.2012.143

    Article  CAS  Google Scholar 

  27. Liu Y, Gao S, Wang YP, Yang Y, Long J, Zhang Y, Wu X (2014) Distal mud deposits associated with the Pearl River over the northwestern continental shelf of the South China Sea. Mar Geol 347:43–57. https://doi.org/10.1016/j.margeo.2013.10.012

    Article  CAS  Google Scholar 

  28. Ning X, Chai F, Xue H, Cai Y, Liu C, Shi J (2004) Physical-biological oceanographic coupling influencing phytoplankton and primary production in the South China Sea. J Geophys Res Oceans 109:C10005. https://doi.org/10.1029/2004JC002365

    Article  Google Scholar 

  29. Zhang Y, Su X, Chen F, Wang Y, Jiao L et al (2012) Microbial diversity in cold seep sediments from the northern South China Sea. Geosci Front 3:301–316. https://doi.org/10.1016/j.gsf.2011.11.014

    Article  CAS  Google Scholar 

  30. Zhang Y, Zhao Z, Dai M, Jiao N, Herndl GJ (2014) Drivers shaping the diversity and biogeography of total and active bacterial communities in the South China Sea. Mol Ecol 23:2260–2274. https://doi.org/10.1111/mec.12739

    Article  CAS  Google Scholar 

  31. Gong J, Sun X, Lin Z, Lu H, Lu Y (2017) Geochemical and microbial characters of sediment from the gas hydrate area in the Taixinan Basin, South China Sea. Hai Yang Xue Bao 36:52–64. https://doi.org/10.1007/s13131-017-1111-2

    Article  CAS  Google Scholar 

  32. Chen Y, Mi T, Liu Y, Li S, Zhen Y (2020) Microbial Community Composition and Function in Sediments from the Pearl River Mouth Basin. J Ocean Univ China 19:941–953. https://doi.org/10.1007/s11802-020-4225-7

    Article  CAS  Google Scholar 

  33. Caporaso JG, Lauber CL, Walters WA, Berg-Lyons D, Lozupone CA et al (2011) Global patterns of 16S rRNA diversity at a depth of millions of sequences per sample. Proc Natl Acad Sci 108:4516. https://doi.org/10.1073/pnas.1000080107

    Article  Google Scholar 

  34. Bolyen E, Rideout JR, Dillon MR, Bokulich NA, Abnet CC et al (2019) Reproducible, interactive, scalable and extensible microbiome data science using QIIME 2. Nat Biotechnol 37:852–857. https://doi.org/10.1038/s41587-019-0209-9

    Article  CAS  Google Scholar 

  35. Louca S, Parfrey LW, Doebeli M (2016) Decoupling function and taxonomy in the global ocean microbiome. Science 353:1272–1277. https://doi.org/10.1126/science.aaf4507

    Article  CAS  Google Scholar 

  36. Jari Oksanen FGB, Friendly M, Kindt R, Legendre P, McGlinn D, Minchin PR, O'Hara RB, Simpson GL, Solymos P, Stevens MHH, Szoecs E and Wagner H (2019) vegan: Community Ecology Package. R package version 2.5–6. https://CRAN.R-project.org/package=vegan. Accessed 7 Sept 2020

  37. Liu Y, Wen T, Chen T (2020) amplicon: Statistics and visualization for microbiome data. R package version 1.1.4. https://github.com/microbiota/amplicon. Accessed 15 Sept 2020

  38. Hijmans RJ (2019) geosphere: Spherical Trigonometry. R package version 1.5–10. https://CRAN.R-project.org/package=geosphere. Accessed 7 Oct 2020

  39. Liu C, Cui Y, Li X, Yao M (2021) microeco: an R package for data mining in microbial community ecology. FEMS Microbiol Ecol 97:fiaa255. https://doi.org/10.1093/femsec/fiaa255

  40. Liu C, Yao M, Stegen JC, Rui J, Li J, Li X (2017) Long-term nitrogen addition affects the phylogenetic turnover of soil microbial community responding to moisture pulse. Sci Rep 7:17492. https://doi.org/10.1038/s41598-017-17736-w

    Article  CAS  Google Scholar 

  41. Zhao J, Gao Q, Zhou J, Wang M, Liang Y et al (2019) The scale dependence of fungal community distribution in paddy soil driven by stochastic and deterministic processes. Fungal Ecol 42:100856. https://doi.org/10.1016/j.funeco.2019.07.010

    Article  Google Scholar 

  42. Kembel SW, Cowan PD, Helmus MR, Cornwell WK, Morlon H et al (2010) Picante: R tools for integrating phylogenies and ecology. Bioinformatics 26:1463–1464. https://doi.org/10.1093/bioinformatics/btq166

    Article  CAS  Google Scholar 

  43. Kembel SW (2009) Disentangling niche and neutral influences on community assembly: assessing the performance of community phylogenetic structure tests. Ecol Lett 12:949–960. https://doi.org/10.1111/j.1461-0248.2009.01354.x

    Article  Google Scholar 

  44. Zhou J, Ning D (2017) Stochastic Community Assembly: Does It Matter in Microbial Ecology? Microbiol Mol Biol Rev 81:e00002-00017. https://doi.org/10.1128/MMBR.00002-17

    Article  Google Scholar 

  45. Bahram M, Kohout P, Anslan S, Harend H, Abarenkov K, Tedersoo L (2016) Stochastic distribution of small soil eukaryotes resulting from high dispersal and drift in a local environment. ISME J 10:885–896. https://doi.org/10.1038/ismej.2015.164

    Article  Google Scholar 

  46. Wang Z, Juarez DL, Pan JF, Blinebry SK, Gronniger J et al (2019) Microbial communities across nearshore to offshore coastal transects are primarily shaped by distance and temperature. Environ Microbiol 21:3862–3872. https://doi.org/10.1111/1462-2920.14734

    Article  CAS  Google Scholar 

  47. Xiao Y, Xu Y, Dong W, Liang Y, Fan F et al (2015) The complicated substrates enhance the microbial diversity and zinc leaching efficiency in sphalerite bioleaching system. Appl Microbiol Biotechnol 99:10311–10322. https://doi.org/10.1007/s00253-015-6881-x

    Article  CAS  Google Scholar 

  48. Nekola JC, White PS (1999) The distance decay of similarity in biogeography and ecology. J Biogeogr 26:867–878. https://doi.org/10.1046/j.1365-2699.1999.00305.x

    Article  Google Scholar 

  49. Gaston KJ (1994) What is rarity? In: Gaston KJ (ed) Rarity. Springer, Netherlands, pp 1–21

    Chapter  Google Scholar 

  50. Li M, Mi T, He H, Chen Y, Zhen Y, Yu Z (2021) Active bacterial and archaeal communities in coastal sediments: Biogeography pattern, assembly process and co-occurrence relationship. Sci Total Environ 750:142252. https://doi.org/10.1016/j.scitotenv.2020.142252

    Article  CAS  Google Scholar 

  51. Liu J, Zhu S, Liu X, Yao P, Ge T, Zhang XH (2020) Spatiotemporal dynamics of the archaeal community in coastal sediments: assembly process and co-occurrence relationship. ISME J 14:1463–1478. https://doi.org/10.1038/s41396-020-0621-7

    Article  Google Scholar 

  52. Zinger L, Amaral-Zettler LA, Fuhrman JA, Horner-Devine MC, Huse SM et al (2011) Global patterns of bacterial beta-diversity in seafloor and seawater ecosystems. PLoS ONE 6:e24570. https://doi.org/10.1371/journal.pone.0024570

    Article  CAS  Google Scholar 

  53. Müller AL, de Rezende JR, Hubert CRJ, Kjeldsen KU, Lagkouvardos I et al (2014) Endospores of thermophilic bacteria as tracers of microbial dispersal by ocean currents. ISME J 8:1153–1165. https://doi.org/10.1038/ismej.2013.225

    Article  CAS  Google Scholar 

  54. Wang W (2007) Study on the coastal geomorphological sedimentation of the South China Sea. Guangdong Economy Publishing House, Guangzhou

    Google Scholar 

  55. Liu J, Liu X, Wang M, Qiao Y, Zheng Y, Zhang XH (2015) Bacterial and archaeal communities in sediments of the north Chinese marginal seas. Microb Ecol 70:105–117. https://doi.org/10.1007/s00248-014-0553-8

    Article  CAS  Google Scholar 

  56. Sachithanandam V, Saravanane N, Chandrasekar K, Karthick P, Lalitha P, Sai Elangovan S, Sudhakar M (2020) Microbial diversity from the continental shelf regions of the Eastern Arabian Sea: A metagenomic approach. Saudi J Biol Sci 27:2065–2075. https://doi.org/10.1016/j.sjbs.2020.06.011

    Article  CAS  Google Scholar 

  57. Yao Z, Du S, Liang C, Zhao Y, Dini-Andreote F, Wang K, Zhang D (2019) Bacterial community assembly in a typical estuarine Marsh with multiple environmental gradients. Appl Environ Microbiol 85:e02602–18. https://doi.org/10.1128/AEM.02602-18

  58. Chase JM (2010) Stochastic community assembly causes higher biodiversity in more productive environments. Science 328:1388–1391. https://doi.org/10.1126/science.1187820

    Article  CAS  Google Scholar 

  59. Dini-Andreote F, Stegen JC, van Elsas JD, Salles JF (2015) Disentangling mechanisms that mediate the balance between stochastic and deterministic processes in microbial succession. Proc Natl Acad Sci 112:E1326. https://doi.org/10.1073/pnas.1414261112

    Article  CAS  Google Scholar 

  60. Allen R, Hoffmann LJ, Larcombe MJ, Louisson Z, Summerfield TC (2020) Homogeneous environmental selection dominates microbial community assembly in the oligotrophic South Pacific Gyre. Mol Ecol 29:4680–4691. https://doi.org/10.1111/mec.15651

    Article  CAS  Google Scholar 

  61. Li Y, Gao Y, Zhang W, Wang C, Wang P, Niu L, Wu H (2019) Homogeneous selection dominates the microbial community assembly in the sediment of the Three Gorges Reservoir. Sci Total Environ 690:50–60. https://doi.org/10.1016/j.scitotenv.2019.07.014

    Article  CAS  Google Scholar 

  62. Zhang K, Shi Y, Cui X, Yue P, Li K et al (2019) Salinity Is a Key Determinant for Soil Microbial Communities in a Desert Ecosystem. mSystems 4:e00225-00218. https://doi.org/10.1128/mSystems.00225-18

    Article  CAS  Google Scholar 

  63. D’Hondt S, Spivack AJ, Pockalny R, Ferdelman TG, Fischer JP et al (2009) Subseafloor sedimentary life in the South Pacific Gyre. Proc Natl Acad Sci U S A 106:11651–11656. https://doi.org/10.1073/pnas.0811793106

    Article  Google Scholar 

  64. Roy H, Kallmeyer J, Adhikari RR, Pockalny R, Jorgensen BB, D’Hondt S (2012) Aerobic microbial respiration in 86-million-year-old deep-sea red clay. Science 336:922–925. https://doi.org/10.1126/science.1219424

    Article  CAS  Google Scholar 

  65. Imhoff JF (2006) The Family Ectothiorhodospiraceae. In: Dworkin, M, Falkow, S, Rosenberg, E, Schleifer, K-H, Stackebrandt, E (eds.) The Prokaryotes: Volume 6: Proteobacteria: Gamma Subclass. Springer New York, New York, NY, pp. 874-886

  66. Oren A (2014) The Family Ectothiorhodospiraceae. In: Rosenberg E, DeLong EF, Lory S, Stackebrandt E, Thompson F (eds) The Prokaryotes: Gammaproteobacteria. Springer Berlin Heidelberg, Berlin, pp 199–222

    Google Scholar 

  67. Baumgartner LK, Reid RP, Dupraz C, Decho AW, Buckley DH et al (2006) Sulfate reducing bacteria in microbial mats: Changing paradigms, new discoveries. Sediment Geol 185:131–145. https://doi.org/10.1016/j.sedgeo.2005.12.008

    Article  CAS  Google Scholar 

  68. Tilburg CE, Jordan LM, Carlson AE, Zeeman SI, Yund PO (2015) The effects of precipitation, river discharge, land use and coastal circulation on water quality in coastal Maine. R Soc Open Sci 2:140429. https://doi.org/10.1098/rsos.140429

    Article  Google Scholar 

  69. Wiegner TN, Edens CJ, Abaya LM, Carlson KM, Lyon-Colbert A, Molloy SL (2017) Spatial and temporal microbial pollution patterns in a tropical estuary during high and low river flow conditions. Mar Pollut Bull 114:952–961. https://doi.org/10.1016/j.marpolbul.2016.11.015

    Article  CAS  Google Scholar 

  70. Basili M, Campanelli A, Frapiccini E, Luna GM, Quero GM (2021) Occurrence and distribution of microbial pollutants in coastal areas of the Adriatic Sea influenced by river discharge. Environ Pollut 285:117672. https://doi.org/10.1016/j.envpol.2021.117672

    Article  CAS  Google Scholar 

  71. Xun W, Li W, Xiong W, Ren Y, Liu Y et al (2019) Diversity-triggered deterministic bacterial assembly constrains community functions. Nat Commun 10:3833. https://doi.org/10.1038/s41467-019-11787-5

    Article  CAS  Google Scholar 

  72. Zhang Z, Deng Y, Feng K, Cai W, Li S et al (2019) Deterministic Assembly and Diversity Gradient Altered the Biofilm Community Performances of Bioreactors. Environ Sci Technol 53:1315–1324. https://doi.org/10.1021/acs.est.8b06044

    Article  CAS  Google Scholar 

  73. Zhou J, Chen GF, Ying KZ, Jin H, Song JT, Cai ZH (2019) Phycosphere Microbial Succession Patterns and Assembly Mechanisms in a Marine Dinoflagellate Bloom. Appl Environ Microbiol 85:e00349–19. https://doi.org/10.1128/aem.00349-19

  74. Wang K, Yan H, Peng X, Hu H, Zhang H et al (2020) Community assembly of bacteria and archaea in coastal waters governed by contrasting mechanisms: A seasonal perspective. Mol Ecol 29:3762–3776. https://doi.org/10.1111/mec.15600

    Article  CAS  Google Scholar 

  75. Hanson CA, Fuhrman JA, Horner-Devine MC, Martiny JBH (2012) Beyond biogeographic patterns: processes shaping the microbial landscape. Nat Rev Microbiol 10:497–506. https://doi.org/10.1038/nrmicro2795

    Article  CAS  Google Scholar 

  76. Lu Z, Liu Z, Zhang C, Wei Q, Zhang S, Li M (2021) Spatial and seasonal variations of sediment bacterial communities in a river-bay system in South China. Appl Microbiol Biotechnol 105:1979–1989. https://doi.org/10.1007/s00253-021-11142-z

    Article  CAS  Google Scholar 

  77. Wang XB, Lü XT, Yao J, Wang ZW, Deng Y et al (2017) Habitat-specific patterns and drivers of bacterial β-diversity in China’s drylands. ISME J 11:1345–1358. https://doi.org/10.1038/ismej.2017.11

    Article  Google Scholar 

  78. Logares R, Deutschmann IM, Junger PC, Giner CR, Krabberød AK et al (2020) Disentangling the mechanisms shaping the surface ocean microbiota. Microbiome 8:55. https://doi.org/10.1186/s40168-020-00827-8

    Article  CAS  Google Scholar 

  79. Chen L, Liu S, Chen Q, Zhu G, Wu X et al (2020) Dispersal limitation drives biogeographical patterns of anammox bacterial communities across the Yangtze River. Appl Microbiol Biotechnol 104:5535–5546. https://doi.org/10.1007/s00253-020-10511-4

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank the South China Sea Science Investigation Public Voyage of Sun Yat-sen University and the chief scientist Jiaxue Wu, Pr., from the Center for Coastal Ocean Science and Technology for the sediment samples and CTD data. We also thank the Third Institute of Oceanography of the Ministry of Natural Resources for their support for the element testing.

Funding

This work was supported by the National Natural Science Foundation of China (No. 91858208); Innovation Group Project of Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai) (No. 311020005); and China Postdoctoral Science Foundation (No. 2019M663209).

Author information

Authors and Affiliations

Authors

Contributions

H.L., G.L., and J.L. designed this research; D.G. collected and treated the sediment samples; G.L., H.C., and M.H. carried out experiments; H.L. performed bioinformatics analyses and wrote the manuscript. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Jianguo Lu.

Ethics declarations

Ethics Approval

Not applicable.

Consent to Participate

Not applicable.

Consent for Publication

All authors have read the final version of the manuscript and agree with its submission.

Competing Interests

The authors declare no competing interests.

Supplementary Information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, H., Lin, G., Gao, D. et al. Geographic Scale Influences the Interactivities Between Determinism and Stochasticity in the Assembly of Sedimentary Microbial Communities on the South China Sea Shelf. Microb Ecol 85, 121–136 (2023). https://doi.org/10.1007/s00248-021-01946-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00248-021-01946-x

Keywords

Navigation