Skip to main content
Log in

Plant Species–Driven Distribution of Individual Clades of Comammox Nitrospira in a Subtropical Estuarine Wetland

  • Soil Microbiology
  • Published:
Microbial Ecology Aims and scope Submit manuscript

Abstract

Plant species play a crucial role in mediating the activity and community structure of soil microbiomes through differential inputs of litter and rhizosphere exudates, but we have a poor understanding of how plant species influence comammox Nitrospira, a newly discovered ammonia oxidizer with pivotal functionality. Here, we investigate the abundance, diversity, and community structure of comammox Nitrospira underneath five plant species and a bare tidal flat at three soil depths in a subtropical estuarine wetland. Plant species played a critical role in driving the distribution of individual clades of comammox Nitrospira, explaining 59.3% of the variation of community structure. Clade A.1 was widely detected in all samples, while clades A.2.1, A.2.2, A.3 and B showed plant species-dependent distribution patterns. Compared with the native species Cyperus malaccensis, the invasion of Spartina alterniflora increased the network complexity and changed the community structure of comammox Nitrospira, while the invasive effects from Kandelia obovata and Phragmites australis were relatively weak. Soil depths significantly influenced the community structure of comammox Nitrospira, but the effect was much weaker than that from plant species. Altogether, our results highlight the previously unrecognized critical role of plant species in driving the distribution of comammox Nitrospira in a subtropical estuarine wetland.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data availability

The raw sequences have been deposited in the DNA Data Bank of Japan under accession number DRA012728.

References

  1. Kuypers MMM, Marchant HK, Kartal B (2018) The microbial nitrogen-cycling network. Nat. Rev. Microbiol. 16:263–276

    Article  CAS  Google Scholar 

  2. Hu HW, He JZ (2017) Comammox—a newly discovered nitrification process in the terrestrial nitrogen cycle. J. Soi.l Sediment. 17:2709–2717

    Article  CAS  Google Scholar 

  3. Liu S, Wang H, Chen L, Wang J, Zheng M, Liu S, Chen Q, Ni J (2020) Comammox Nitrospira within the Yangtze River continuum: community, biogeography, and ecological drivers. ISME. J. 14:2488–2504

    Article  CAS  Google Scholar 

  4. Daims H, Lebedeva EV, Pjevac P, Han P, Herbold C, Albertsen M, Jehmlich N, Palatinszky M, Vierheilig J, Bulaev A (2015) Complete nitrification by Nitrospira bacteria. Nature. 528:504–509

    Article  CAS  Google Scholar 

  5. van Kessel MAHJ, Speth DR, Albertsen M, Nielsen PH, Op den Camp HJM, Kartal B, Jetten MSM, Lücker S (2015) Complete nitrification by a single microorganism. Nature. 528:555–559

    Article  Google Scholar 

  6. Li C, Hu HW, Chen QL, Yan ZZ, Thi Nguyen BA, Chen D, He JZ (2021) Niche specialization of comammox Nitrospira clade A in terrestrial ecosystems. Soil. Biol. Biochem. 156:108231

    Article  CAS  Google Scholar 

  7. Xia F, Wang JG, Zhu T, Zou B, Rhee SK, Quan ZX (2018) Ubiquity and diversity of complete ammonia oxidizers (comammox). Appl. Environ. Microb. 84:e01390-e1418

    Article  CAS  Google Scholar 

  8. Li C, Hu HW, Chen QL, Chen D, He JZ (2020) Niche differentiation of clade A comammox Nitrospira and canonical ammonia oxidizers in selected forest soils. Soil. Biol. Biochem. 149:107925

    Article  CAS  Google Scholar 

  9. Li J, Hua ZS, Liu T, Wang C, Li J, Bai G, Lücker S, Jetten MSM, Zheng M, Guo J (2021) Selective enrichment and metagenomic analysis of three novel comammox Nitrospira in a urine-fed membrane bioreactor. ISME. Commun. 1:7

    Article  Google Scholar 

  10. Liu S, Cai H, Wang J, Wang H, Zheng T, Chen Q, Ni J (2021) In-situ expressions of comammox Nitrospira along the Yangtze River. Water. Res. 200:117241

    Article  CAS  Google Scholar 

  11. Kits KD, Sedlacek CJ, Lebedeva EV, Han P, Bulaev A, Pjevac P, Daebeler A, Romano S, Albertsen M, Stein LY, Daims H, Wagner M (2017) Kinetic analysis of a complete nitrifier reveals an oligotrophic lifestyle. Nature. 549:269–272

    Article  CAS  Google Scholar 

  12. Sakoula D, Koch H, Frank J, Jetten MSM, van Kessel M, Lucker S (2020) Enrichment and physiological characterization of a novel comammox Nitrospira indicates ammonium inhibition of complete nitrification. ISME. J. 15:1010–1024

    Article  Google Scholar 

  13. Wang Z, Cao Y, Zhu-Barker X, Nicol GW, Wright AL, Jia Z, Jiang X (2019) Comammox Nitrospira clade B contributes to nitrification in soil. Soil. Biol. Biochem. 135:392–395

    Article  CAS  Google Scholar 

  14. Osburn ED, Barrett JE (2020) Abundance and functional importance of complete ammonia-oxidizing bacteria (comammox) versus canonical nitrifiers in temperate forest soils. Soil. Biol. Biochem. 145:107801

    Article  CAS  Google Scholar 

  15. Takahashi Y, Fujitani H, Hirono Y, Tago K, Wang Y, Hayatsu M, Tsuneda S (2020) Enrichment of comammox and nitrite-oxidizing Nitrospira from acidic soils. Front. Microbiol. 11:1737

    Article  Google Scholar 

  16. Li C, Hu HW, Chen QL, Chen D, He JZ (2019) Comammox Nitrospira play an active role in nitrification of agricultural soils amended with nitrogen fertilizers. Soil. Biol. Biochem. 138:107609

    Article  CAS  Google Scholar 

  17. Wang W, Wang C, Sardans J, Tong C, Jia R, Zeng C, Peñuelas J (2015) Flood regime affects soil stoichiometry and the distribution of the invasive plants in subtropical estuarine wetlands in China. CATENA. 128:144–154

    Article  CAS  Google Scholar 

  18. Koch H, van Kessel MAHJ, Lücker S (2019) Complete nitrification: insights into the ecophysiology of comammox Nitrospira. Appl. Microbiol. Biot. 103:177–189

    Article  CAS  Google Scholar 

  19. Palomo A, Pedersen AG, Fowler SJ, Dechesne A, Sicheritz-Pontén T, Smets BF (2018) Comparative genomics sheds light on niche differentiation and the evolutionary history of comammox Nitrospira. ISME. J. 12:1779–1793

    Article  Google Scholar 

  20. Wang DQ, Zhou CH, Nie M, Gu JD, Quan ZX (2021) Abundance and niche specificity of different types of complete ammonia oxidizers (comammox) in salt marshes covered by different plants. Sci. Total. Environ. 768:144993

    Article  CAS  Google Scholar 

  21. Liu Z, Zhang C, Wei Q, Zhang S, Quan Z, Li M (2020) Temperature and salinity drive comammox community composition in mangrove ecosystems across southeastern China. Sci. Total. Environ. 742:140456

    Article  CAS  Google Scholar 

  22. Wang X, Lu L, Zhou X, Tang X, Kuang L, Chen J, Shan J, Lu H, Qin H, Adams J, Wang B (2021) Niche differentiation of comammox Nitrospira in the mudflat and reclaimed agricultural soils along the north branch of Yangtze River estuary. Front. Microbiol. 11:618287

    Article  Google Scholar 

  23. Burns JH, Anacker BL, Strauss SY, Burke DJ (2015) Soil microbial community variation correlates most strongly with plant species identity, followed by soil chemistry, spatial location and plant genus. AoB. Plants. 7:plv030

    Article  Google Scholar 

  24. Fahey C, Koyama A, Antunes PM, Dunfield K, Flory SL (2020) Plant communities mediate the interactive effects of invasion and drought on soil microbial communities. ISME. J. 14:1396–1409

    Article  Google Scholar 

  25. Beltz JK, McMahon H, Torres Nunez I, Bernhard AE (2019) Vegetation-dependent response to drought in salt marsh ammonia-oxidizer communities. Microorganisms. 8:9

    Article  Google Scholar 

  26. Wang YF, Gu JD (2013) Higher diversity of ammonia/ammonium-oxidizing prokaryotes in constructed freshwater wetland than natural coastal marine wetland. Appl. Microbiol. Biot. 97:7015–7033

    Article  CAS  Google Scholar 

  27. Zhang QF, Peng JJ, Chen Q, Li XF, Xu CY, Yin HB, Yu S (2011) Impacts of Spartina alterniflora invasion on abundance and composition of ammonia oxidizers in estuarine sediment. J. Soil. Sediment. 11:1020–1031

    Article  Google Scholar 

  28. Boer SI, Hedtkamp SI, van Beusekom JE, Fuhrman JA, Boetius A, Ramette A (2009) Time- and sediment depth-related variations in bacterial diversity and community structure in subtidal sands. ISME. J. 3:780–791

    Article  Google Scholar 

  29. Horton DJ, Theis KR, Uzarski DG, Learman DR (2019) Microbial community structure and microbial networks correspond to nutrient gradients within coastal wetlands of the Laurentian Great Lakes. FEMS. Microbiol. Ecol. 95:fiz033

    Article  CAS  Google Scholar 

  30. Zhao D, Zeng J, Wan W, Liang H, Huang R, Wu QL (2013) Vertical distribution of ammonia-oxidizing archaea and bacteria in sediments of a eutrophic lake. Curr. Microbiol. 67:327–332

    Article  CAS  Google Scholar 

  31. Liu Y, Zhang J, Zhang X, Xie S (2014) Depth-related changes of sediment ammonia-oxidizing microorganisms in a high-altitude freshwater wetland. Appl. Microbiol. Biot. 98:5697–5707

    Article  CAS  Google Scholar 

  32. Wang WQ, Wang C, Sardans J, Zeng CS, Tong C, Peñuelas J (2015) Plant invasive success associated with higher N-use efficiency and stoichiometric shifts in the soil–plant system in the Minjiang River tidal estuarine wetlands of China. Wetl. Ecol. Manag. 23:865–880

    Article  CAS  Google Scholar 

  33. Cheng Y, Zha Y, Tong C, Hu M, Du D, Fan Y, Chen L (2020) Plant population dynamics in a degraded coastal wetland and implications for the carbon cycle. Wetlands. 40:1617–1625

    Article  Google Scholar 

  34. Zheng J, Li J, Lan Y, Liu S, Zhou L, Luo Y, Liu J, Wu Z (2018) Effects of Spartina alterniflora invasion on Kandelia candel rhizospheric bacterial community as determined by high-throughput sequencing analysis. J. Soil. Sediment. 19:332–344

    Article  Google Scholar 

  35. Liu JQ, Zeng CS, Chen N (2006) Research of Minjiang River Estuary Wetland. Science Press, Beijing

    Google Scholar 

  36. Lin Y, Ye G, Luo J, Di HJ, Liu D, Fan J, Ding W (2018) Nitrosospira cluster 8a play a predominant role in the nitrification process of a subtropical Ultisol under long-term inorganic and organic fertilization. Appl. Environ. Microb. 84:e01031-e1118

    Article  CAS  Google Scholar 

  37. Jiang R, Wang JG, Zhu T, Zou B, Wang DQ, Rhee SK, An D, Ji ZY, Quan ZX (2020) Use of newly designed primers for quantification of complete ammonia-oxidizing (comammox) bacterial clades and strict nitrite oxidizers in the genus Nitrospira. Appl. Environ. Microb. 86:e01775-e1720

    Article  CAS  Google Scholar 

  38. Caporaso JG, Kuczynski J, Stombaugh J, Bittinger K, Bushman FD, Costello EK, Fierer N, Peña AG, Goodrich JK, Gordon JI, Huttley GA, Kelley ST, Knights D, Koenig JE, Ley RE, Lozupone CA, McDonald D, Muegge BD, Pirrung M, Reeder J, Sevinsky JR, Turnbaugh PJ, Walters WA, Widmann J, Yatsunenko T, Zaneveld J, Knight R (2010) QIIME allows analysis of high-throughput community sequencing data. Nat. Methods. 7:335–336

    Article  CAS  Google Scholar 

  39. Lin Y, Ye G, Ding W, Hu HW, Zheng Y, Fan J, Wan S, Duan C, He JZ (2020) Niche differentiation of comammox Nitrospira and canonical ammonia oxidizers in soil aggregate fractions following 27-year fertilizations. Agri. Ecosyst. Environ. 304:107147

    Article  CAS  Google Scholar 

  40. Edgar RC, Haas BJ, Clemente JC, Quince C, Knight R (2011) UCHIME improves sensitivity and speed of chimera detection. Bioinformatics. 27:2194–2200

    Article  CAS  Google Scholar 

  41. Pjevac P, Schauberger C, Poghosyan L, Herbold CW, van Kessel M, Daebeler A, Steinberger M, Jetten MSM, Lucker S, Wagner M, Daims H (2017) AmoA-targeted polymerase chain reaction primers for the specific detection and quantification of comammox Nitrospira in the environment. Front. Microbiol. 8:1508

    Article  Google Scholar 

  42. Kumar S, Stecher G, Li M, Knyaz C, Tamura K (2018) MEGA X: molecular evolutionary genetics analysis across computing platforms. Mol. Biol. Evol. 35:1547–1549

    Article  CAS  Google Scholar 

  43. Letunic I, Bork P (2019) Interactive Tree Of Life (iTOL) v4: recent updates and new developments. Nucleic. Acids. Res. 47:W256–W259

    Article  CAS  Google Scholar 

  44. Reshef DN, Reshef YA, Finucane HK, Grossman SR, McVean G, Turnbaugh PJ, Lander ES, Mitzenmacher M, Sabeti PC (2011) Detecting novel associations in large data sets. Science. 334:1518

    Article  CAS  Google Scholar 

  45. Shannon P, Markiel A, Ozier O, Baliga NS, Wang JT, Ramage D, Amin N, Schwikowski B, Ideker T (2003) Cytoscape: a software environment for integrated models of biomolecular interaction networks. Genome. Res. 13:2498–2504

    Article  CAS  Google Scholar 

  46. Oksanen J, Kindt R, Legendre P, O’Hara B, Stevens MHH, Oksanen MJ, Suggests M (2007) The vegan package. Community. Ecology. Package. 10:631–637

    Google Scholar 

  47. Liaw A, Wiener M (2002) Classification and regression by randomForest. R. News. 2:18–22

    Google Scholar 

  48. Xu S, Wang B, Li Y, Jiang D, Zhou Y, Ding A, Zong Y, Ling X, Zhang S, Lu H (2020) Ubiquity, diversity, and activity of comammox Nitrospira in agricultural soils. Sci. Total. Environ. 706:135684

    Article  CAS  Google Scholar 

  49. Moin NS, Nelson KA, Bush A, Bernhard AE (2009) Distribution and aiversity of archaeal and bacterial ammonia oxidizers in salt marsh sediments. Appl. Environ. Microb. 75:7461–7468

    Article  CAS  Google Scholar 

  50. Zhang J, Liu B, Zhou X, Chu J, Li Y, Wang M (2015) Effects of emergent aquatic plants on abundance and community structure of ammonia-oxidising microorganisms. Ecol. Eng. 81:504–513

    Article  Google Scholar 

  51. Nardi P, Laanbroek HJ, Nicol GW, Renella G, Cardinale M, Pietramellara G, Weckwerth W, Trinchera A, Ghatak A, Nannipieri P (2020) Biological nitrification inhibition in the rhizosphere: determining interactions and impact on microbially mediated processes and potential applications. FEMS. Microbiol. Rev. 44:874–908

    Article  CAS  Google Scholar 

  52. Zhang P, Li B, Wu J, Hu S (2019) Invasive plants differentially affect soil biota through litter and rhizosphere pathways: a meta-analysis. Ecol. Lett. 22:200–210

    Article  Google Scholar 

  53. Cao M, Cui L, Sun H, Zhang X, Zheng X, Jiang J (2021) Effects of Spartina alterniflora invasion on soil microbial community structure and ecological functions. Microorganisms. 9:138

    Article  CAS  Google Scholar 

  54. Wang W, Sardans J, Wang C, Zeng C, Tong C, Chen G, Huang J, Pan H, Peguero G, Vallicrosa H, Penuelas J (2019) The response of stocks of C, N, and P to plant invasion in the coastal wetlands of China. Global. Change. Biol. 25:733–743

    Article  Google Scholar 

  55. Trivedi C, Reich PB, Maestre FT, Hu HW, Singh BK, Delgado-Baquerizo M (2019) Plant-driven niche differentiation of ammonia-oxidizing bacteria and archaea in global drylands. ISME. J. 13:2727–2736

    Article  CAS  Google Scholar 

  56. Zhou Y, Staver AC (2019) Enhanced activity of soil nutrient-releasing enzymes after plant invasion: a meta-analysis. Ecology. 100:e02830

    Article  Google Scholar 

  57. Gao GF, Peng D, Wu D, Zhang Y, Chu H (2021) Increasing inundation frequencies enhance the stochastic process and network complexity of the soil archaeal community in coastal wetlands. Appl. Environ. Microb. 87:e02560-e2520

    Article  CAS  Google Scholar 

  58. Chung CH (2006) Forty years of ecological engineering with Spartina plantations in China. Ecol. Eng. 27:49–57

    Article  Google Scholar 

  59. Chen J, Wang P, Wang C, Wang X, Miao L, Liu S, Yuan Q, Sun S (2019) Fungal community demonstrates stronger dispersal limitation and less network connectivity than bacterial community in sediments along a large river. Environ. Microbiol. 22:832–849

    Article  Google Scholar 

  60. Sun D, Zhao M, Tang X, Liu M, Hou L, Zhao Q, Li J, Gu JD, Han P (2021) Niche adaptation strategies of different clades of comammox Nitrospira in the Yangtze Estuary. Int. Biodeter. Biodegr. 164:105286

    Article  Google Scholar 

  61. Zhao M, Tang X, Sun D, Hou L, Liu M, Zhao Q, Klumper U, Quan Z, Gu JD, Han P (2021) Salinity gradients shape the nitrifier community composition in Nanliu River estuary sediments and the ecophysiology of comammox Nitrospira inopinata. Sci. Total. Environ. 795:148768

    Article  CAS  Google Scholar 

  62. Humayoun SB, Bano N, Hollibaugh JT (2003) Depth distribution of microbial diversity in Mono Lake, a meromictic soda lake in California. Appl. Environ. Microb. 69:1030–1042

    Article  CAS  Google Scholar 

  63. Inceoglu O, Lliros M, Crowe SA, Garcia-Armisen T, Morana C, Darchambeau F, Borges AV, Descy JP, Servais P (2015) Vertical distribution of functional potential and active microbial communities in meromictic lake Kivu. Microb. Ecol. 70:596–611

    Article  CAS  Google Scholar 

  64. Huettel M, Røy H, Precht E, Ehrenhauss S (2003) Hydrodynamical impact on biogeochemical processes in aquatic sediments, the interactions between sediments and water. Springer pp:231−236

Download references

Funding

This study received funding from the following sources: National Natural Science Foundation of China (41930756, 42077041) and Fujian Province (2021J011038).

Author information

Authors and Affiliations

Authors

Contributions

Y. Lin and J. He conceived and designed the study; G. Ye, P. Yang, S. Wan, and M. Feng performed the experiments and analyzed the samples; Y. Lin and Z. He conducted the bioinformatic and biostatistical analyses; Y. Lin, H. Hu and J. He drafted the manuscript.

Corresponding author

Correspondence to Ji-Zheng He.

Ethics declarations

Ethics approval and consent to participate

Not applicable.

Consent for publication

All listed authors have agreed to be listed and have approved the submitted version of the manuscript.

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 448 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lin, Y., Ye, G., Hu, HW. et al. Plant Species–Driven Distribution of Individual Clades of Comammox Nitrospira in a Subtropical Estuarine Wetland. Microb Ecol 85, 209–220 (2023). https://doi.org/10.1007/s00248-021-01940-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00248-021-01940-3

Keywords

Navigation