Skip to main content
Log in

Vertical Distribution of Ammonia-Oxidizing Archaea and Bacteria in Sediments of a Eutrophic Lake

  • Published:
Current Microbiology Aims and scope Submit manuscript

Abstract

In order to characterize the vertical variation of abundance and community composition of ammonia-oxidizing archaea (AOA) and ammonia-oxidizing bacteria (AOB) in sediments of a eutrophic lake, Lake Taihu, molecular techniques including real-time PCR, clone library, and sequencing were carried out in this study. Abundances of archaeal amoA gene (ranged from 2.34 × 106 to 4.43 × 107 copies [g dry sediment]−1) were higher than those of bacterial amoA gene (ranged from 5.02 × 104 to 6.91 × 106 copies [g dry sediment]−1) for all samples and both of them exhibited negative correlations with the increased depths. Diversities of archaeal and bacterial amoA gene increased with the elevated depths. There were no significant variations of AOB community structures derived from different sediment depths, whereas obvious differences were observed for the AOA community compositions. The information acquired in this study would be useful to elucidate the roles of AOA and AOB in the nitrogen cycling of freshwater ecosystems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Altschul S, Madden TL, Schaffer AA et al (1997) Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res 25:3389–3402

    Article  PubMed  CAS  Google Scholar 

  2. Beman JM, Francis CA (2006) Diversity of ammonia-oxidizing archaea and bacteria in the sediments of a hypernutrified subtropical estuary: bahía del Tóbari, Mexico. Appl Environ Microb 72:7767–7777

    Article  CAS  Google Scholar 

  3. Francis CA, Roberts KJ, Beman JM (2005) Ubiquity and diversity of ammonia-oxidizing archaea in water columns and sediments of the ocean. Proc Natl Acad Sci USA 102:14683–14688

    Article  PubMed  CAS  Google Scholar 

  4. Francis CA, Beman JM, Kuypers MMM (2007) New processes and players in the nitrogen cycle: the microbial ecology of anaerobic and archaeal ammonia oxidation. ISME J 1:19–27

    Article  PubMed  CAS  Google Scholar 

  5. He JZ, Shen JP, Zhang LM et al (2007) Quantitative analyses of the abundance and composition of ammonia-oxidizing bacteria and ammonia-oxidizing archaea of a Chinese upland red soil under long-term fertilization practices. Environ Microbiol 9:2364–2374

    Article  PubMed  CAS  Google Scholar 

  6. Herrmann M, Saunders AM, Schramm A (2009) Effect of lake trophic status and rooted macrophytes on community composition and abundance of ammonia-oxidizing prokaryotes in freshwater sediments. Appl Environ Microb 75:3127–3136

    Article  CAS  Google Scholar 

  7. Jin XC, Tu QY (1990) Survey specification for lake eutrophication. Environmental Science Press, Beijing, pp 208–230

    Google Scholar 

  8. Kowalchuk GA, Stephen JR (2001) Ammonia-oxidizing bacteria: a model for molecular microbial ecology. Annu Rev Microbiol 55:485–529

    Article  PubMed  CAS  Google Scholar 

  9. Lam P, Jensen MM, Lavik G (2007) Linking crenarchaeal and bacterial nitrification to anammox in the Black Sea. Proc Natl Acad Sci USA 104:7104–7109

    Article  PubMed  CAS  Google Scholar 

  10. Lehours AC, Bardot C, Thenot A et al (2005) Anaerobic microbial communities in Lake Pavin, a unique meromictic lake in France. Appl Environ Microbiol 71:7389–7400

    Article  PubMed  CAS  Google Scholar 

  11. Lehours AC, Evans P, Bardot C et al (2007) Phylogenetic diversity of Archaea and Bacteria in the anoxic zone of a meromictic lake (Lake Pavin, France). Appl Environ Microbiol 73:2016–2019

    Article  PubMed  CAS  Google Scholar 

  12. Leininger S, Urich T, Schloter M et al (2006) Archae predominate among ammonia-oxidizing prokaryotes in soils. Nature 442:806–809

    Article  PubMed  CAS  Google Scholar 

  13. Ministry of Agriculture of the People’s Republic of China (1988) Method for determination of soil organic matter GB 9834-88

  14. Mosier AC, Francis CA (2008) Relative abundance and diversity of ammonia-oxidizing archaea and bacteria in the San Francisco Bay estuary. Environ Microbiol 10:3002–3016

    Article  PubMed  CAS  Google Scholar 

  15. Mullins TD, Britschgi TB, Krest RL et al (1995) Genetic comparisons reveal the same unknown bacterial lineages in Atlantic and Pacific bacterioplankton communities. Limnol Oceanogr 40:148–158

    Article  CAS  Google Scholar 

  16. Nicol GW, Leininger S, Schleper C (2008) The influence of soil pH on the diversity, abundance and transcriptional activity of ammonia oxidizing archaea and bacteria. Environ Microbiol 10:2966–2978

    Article  PubMed  CAS  Google Scholar 

  17. Pouliot J, Galand PE, Lovejoy C (2009) Vertical structure of archaeal communities and the distribution of ammonia monooxygenase A gene variants in two meromictic high Arctic lakes. Environ Microbiol 11:687–699

    Article  PubMed  CAS  Google Scholar 

  18. Qiao M, Wang CX, Huang SB et al (2006) Composition, sources, and potential toxicological significance of PAHs in the surface sediments of the Meiliang Bay, Taihu Lake, China. Environ Int 32:28–33

    Article  PubMed  CAS  Google Scholar 

  19. Qin BQ, Xu PZ, Wu QL et al (2007) Environmental issues of Lake Taihu, China. Hydrobiologia 581:3–14

    Article  CAS  Google Scholar 

  20. Santoro AE, Francis CA, De Sieyes NR et al (2008) Shifts in the relative abundance of ammonia-oxidizing bacteria and archaea across physicochemical gradients in a subterranean estuary. Environ Microbiol 10:1068–1079

    Article  PubMed  CAS  Google Scholar 

  21. Schloss PD, Handelsman J (2005) Introducing DOTUR, a computer program for defining operational taxonomic units and estimating species richness. Appl Environ Microbiol 71:1501–1506

    Article  PubMed  CAS  Google Scholar 

  22. Scholten JCM, Joye SB, Hollibaugh JT et al (2005) Molecular analysis of the sulfate reducing and archaeal community in a meromictic soda lake (Mono Lake, California) by targeting 16S rRNA, mcrA, apsA, and dsrAB genes. Microb Ecol 50:29–39

    Article  PubMed  CAS  Google Scholar 

  23. Tamura K, Dudley J, Nei M (2007) MEGA4: molecular evolutionary genetics analysis (MEGA) software version 4.0. Mol Biol Evol 24:1596–1599

    Article  PubMed  CAS  Google Scholar 

  24. Thompson JD, Gibson TJ, Plewniak F (1997) The CLUSTAL_X windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res 25:4876–4882

    Article  PubMed  CAS  Google Scholar 

  25. Treusch AH, Leininger S, Kletzin A et al (2005) Novel genes for nitrite reductase and Amo-related proteins indicate a role of uncultivated mesophilic crenarchaeota in nitrogen cycling. Environ Microbiol 7:1985–1995

    Article  PubMed  CAS  Google Scholar 

  26. Venter JC, Remington K, Heidelberg JF et al (2004) Environmental genome shotgun sequencing of the Sargasso Sea. Science 304:66–74

    Article  PubMed  CAS  Google Scholar 

  27. Wu YC, Xiang Y, Wang JJ et al (2010) Heterogeneity of archaeal and bacterial ammonia-oxidizing communities in Lake Taihu, China. Environ Microbiol Rep 2:569–576

    Article  PubMed  CAS  Google Scholar 

  28. Wuchter C, Abbas B, Coolen MJL et al (2006) Archaeal nitrification in the ocean. Proc Natl Acad Sci USA 103:12317–12322

    Article  PubMed  CAS  Google Scholar 

  29. Ye WJ, Liu XL, Lin SQ et al (2009) The vertical distribution of bacterial and archaeal communities in the water and sediment of Lake Taihu. FEMS Microbiol Ecol 70:107–120

    Article  PubMed  Google Scholar 

  30. Zeng J, Yang LY, Liang Y et al (2008) Spatial distribution of bacterial communities in sediment of a eutrophic lake revealed by denaturing gradient gel electrophoresis and multivariate analysis. Can J Microbiol 54:1053–1063

    Article  PubMed  CAS  Google Scholar 

  31. Zeng J, Yang LY, Li JY et al (2009) Vertical distribution of bacterial community structure in the sediments of two eutrophic lakes revealed by denaturing gradient gel electrophoresis (DGGE) and multivariate analysis techniques. World J Microb Biot 25:225–233

    Article  CAS  Google Scholar 

  32. Zeng J, Zhao DY, Huang R et al (2012) Abundance and community composition of ammonia-oxidizing archaea and bacteria in two different zones of Lake Taihu. Can J Microbiol 58:1018–1026

    Article  PubMed  CAS  Google Scholar 

  33. Zhang CL, Ye Q, Huang ZY et al (2008) Global occurrence of archaeal amoA genes in terrestrial hot springs. Appl Environ Microbiol 74:6417–6426

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This study was supported by the National Natural Science Foundation of China (41001044, 41101052, U1202231), Natural Science Foundation of Jiangsu Province, China (BK2011876), and a Project Funded by the Priority Academic Program Development of Jiangsu Higher Education Institutions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dayong Zhao.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 180 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhao, D., Zeng, J., Wan, W. et al. Vertical Distribution of Ammonia-Oxidizing Archaea and Bacteria in Sediments of a Eutrophic Lake. Curr Microbiol 67, 327–332 (2013). https://doi.org/10.1007/s00284-013-0369-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00284-013-0369-7

Keywords

Navigation