Skip to main content
Log in

Does Organomineral Fertilizer Combined with Phosphate-Solubilizing Bacteria in Sugarcane Modulate Soil Microbial Community and Functions?

  • Soil Microbiology
  • Published:
Microbial Ecology Aims and scope Submit manuscript

Abstract

Soil bacterial and fungal communities are suitable soil ecosystem health indicators due to their sensitivity to management practices and their role in soil ecosystem processes. Here, information on composition and functions of bacterial and fungal communities were evaluated at two phenological stages of sugarcane (six and twelve months, equivalent to the most intensive vegetative stage and to final maturation, respectively) when organomineral fertilizer, combined with phosphate-solubilizing bacteria (PSB), was added into the soil. Organic compost enriched with apatite (C + A) or phosphorite (C + P) and compost without phosphate enrichment (C) were used in the presence or absence of PSB. In addition, we used a control fertilized with soluble triple superphosphate. The differences were more related to the sampling period than to the type of organomineral fertilizer, being observed higher available phosphorus at six months than at twelve months. Only in the C treatment we observed the presence of Bacillaceae and Planococcaceae, while Pseudomonadaceae were only prevalent in inoculated C + A. As for fungi, the genera Chaetomium and Achroiostachys were only present in inoculated C + P, while the genus Naganishia was most evident in inoculated C + A and in uninoculated C + P. Soliccocozyma represented 75% of the total fungal abundance in uninoculated C while in inoculated C, it represented 45%. The bacterial community was more related to the degradation of easily decomposable organic compounds, while the fungal community was more related to degradation of complex organic compounds. Although the microbial community showed a resilient trait, subtle changes were detected in microbial community composition and function, and this may be related to the increase in yield observed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data Availability

The authors declare that the data will be available when requested.

Code Availability

Not applicable.

References

  1. Tilman D, Balzer C, Hill J, Befort BL (2011) Global food demand and the sustainable intensification of agriculture. PNAS 108:20260–20264. https://doi.org/10.1073/pnas.1116437108

    Article  PubMed  PubMed Central  Google Scholar 

  2. Jacoby R, Peukert M, Succurro A, Koprivova A, Kopriva S (2017) The role of soil microorganisms in plant mineral nutrition—current knowledge and future directions. Front Plant Sci 8:1617. https://doi.org/10.3389/fpls.2017.01617

    Article  PubMed  PubMed Central  Google Scholar 

  3. Mitter EK, Tosi M, Obregón D, Dunfield KE, Germida JJ (2021) Rethinking crop nutrition in times of modern microbiology: innovative biofertilizer technologies. Front Sustain Food Syst 5:29. https://doi.org/10.3389/fsufs.2021.606815

    Article  Google Scholar 

  4. Muller A, Schader C, El-Hage Scialabba N, Brüggemann J, Isensee A, Erb KH, Smith P, Klocke P, Leiber F, Stolze M, Niggli U (2017) Strategies for feeding the world more sustainably with organic agriculture. Nat Commun 8:1290. https://doi.org/10.1038/s41467-017-01410-w

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Mącik M, Gryta A, Frąc M (2020) Biofertilizers in agriculture: an overview on concepts, strategies and effects on soil microorganisms. Adv Agron 162:31–87. https://doi.org/10.1016/bs.agron.2020.02.001

    Article  Google Scholar 

  6. Moraes ER, Mageste JG, Lana RMQ, Da Silva RV, Camargo R (2017) Sugarcane: organo-mineral fertilizers and biostimulants. In: Oliveria AB (ed) Sugarcane-Technology and Research. IntechOpen, London, pp 193–206

    Google Scholar 

  7. Borges BMMN, Abdala DB, Souze MF, Viglio LM, Coelho MJA, Pavinato PS, Frango HCJ (2019) Organomineral phosphate fertilizer from sugarcane byproduct and its effects on soil phosphorus availability and sugarcane yield. Geoderma 339:20–30. https://doi.org/10.1016/j.geoderma.2018.12.036

    Article  CAS  Google Scholar 

  8. Crusciol CAC, Campos MD, Martello JM, Alves CJ, Nascimento CAC, Pereira JCR, Cantarella H (2020) Organomineral fertilizer as source of P and K for sugarcane. Sci Rep 10:5398. https://doi.org/10.1038/s41598-020-62315-1

    Article  PubMed  PubMed Central  Google Scholar 

  9. Zhao Y, Sun Y, Pei M, Fu J, Zhao L, Xiao X (2021) Enhanced rice yields are related to pronounced shifts in soil resident bacterial community structures in response to Rhodopseudomonas palustris and Bacillus subtilis inoculation. J Soils Sediments 21:2369–2380. https://doi.org/10.1007/s11368-021-02929-8

    Article  Google Scholar 

  10. Sharma SB, Sayyed RZ, Trivedi MH, Gobi TA (2013) Phosphate solubilizing microbes: sustainable approach for managing phosphorus deficiency in agricultural soils. Springerplus 2:587. https://doi.org/10.1186/2193-1801-2-587

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Granada CE, Passaglia LM, de Souza EM, Sperotto RA (2018) Is phosphate solubilization the forgotten child of plant growth-promoting rhizobacteria? Front Microbiol 9:2054. https://doi.org/10.3389/fmicb.2018.02054

    Article  PubMed  PubMed Central  Google Scholar 

  12. Alori ET, Glick BR, Babalola OO (2017) Microbial phosphorus solubilization and its potential for use in sustainable agriculture. Front Microbiol 8:971. https://doi.org/10.3389/fmicb.2017.00971

    Article  PubMed  PubMed Central  Google Scholar 

  13. Dhillon J, Torres G, Driver E, Figueiredo B, Raun WR (2017) World phosphorus use efficiency in cereal crops. Agron J 109:1670–1677. https://doi.org/10.2134/agronj2016.08.0483

    Article  CAS  Google Scholar 

  14. Soltangheisi A, Withers PJ, Pavinato PS, Cherubin MR, Rossetto R, Do Carmo JB, Rocha GC, Martinelli LA (2019) Improving phosphorus sustainability of sugarcane production in Brazil. GCB Bionergy 11:1444–1455. https://doi.org/10.1111/gcbb.12650

    Article  CAS  Google Scholar 

  15. Pavinato PS, Cherubin MR, Soltangheisi A, Rocha GC, Chadwick DR, Jones DL (2020) Revealing soil legacy phosphorus to promote sustainable agriculture in Brazil. Sci Rep 10:15615. https://doi.org/10.1038/s41598-020-72302-1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Raymond NS, Gómez-Muñoz B, van der Bom FJ et al (2021) Phosphate-solubilising microorganisms for improved crop productivity: a critical assessment. New Phytol 229:1268–1277. https://doi.org/10.1111/nph.16924

    Article  CAS  PubMed  Google Scholar 

  17. Bononi L, Chiaramonte JB, Pansa CC et al (2020) Phosphorus-solubilizing Trichoderma spp. from Amazon soils improve soybean plant growth. Sci Rep 10:2858. https://doi.org/10.1038/s41598-020-59793-8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Ditta A, Imtiaz M, Mehmood S, Rizwan MS et al (2018) Rock phosphate-enriched organic fertilizer with phosphate-solubilizing microorganisms improves nodulation, growth, and yield of legumes. Commun Soil Sci Plant Anal 49:2715–2725. https://doi.org/10.1080/00103624.2018.1538374

    Article  CAS  Google Scholar 

  19. Ditta A, Arshad M, Zahir ZA, Jamil A (2015) Comparative efficacy of rock phosphate enriched organic fertilizer vs. mineral phosphatic fertilizer for nodulation, growth and yield of lentil. Int J Agric Biol 17:589–595. https://doi.org/10.17957/IJAB/17.3.14.954

    Article  CAS  Google Scholar 

  20. Ditta A, Muhammad J, Imtiaz M et al (2018) Application of rock phosphate enriched composts increases nodulation, growth and yield of chickpea. Int J Recycl Org Waste Agricult 7:33–40. https://doi.org/10.1007/s40093-017-0187-1

    Article  Google Scholar 

  21. Elhaissoufi W, Khourchi S, Ibnyasser A, Ghoulam C et al (2020) Phosphate solubilizing rhizobacteria could have a stronger influence on wheat root traits and aboveground physiology than rhizosphere P solubilization. Front Plant Sci 11:979. https://doi.org/10.3389/fpls.2020.00979

    Article  PubMed  PubMed Central  Google Scholar 

  22. Alori ET, Babalola OO (2018) Microbial inoculants for improving crop quality and human health in Africa. Front Microbiol 9:2213. https://doi.org/10.3389/fmicb.2018.02213

    Article  PubMed  PubMed Central  Google Scholar 

  23. Sundara B, Natarajan V, Hari K (2002) Influence of phosphorus solubilizing bacteria on the changes in soil available phosphorus and sugarcane and sugar yields. Field Crops Res 77:43–49. https://doi.org/10.1016/S0378-4290(02)00048-5

    Article  Google Scholar 

  24. Rosa PAL, Mortinho ES, Jalal A, Galindo FS, Buzetti S, Fernandes GC, Barco Neto M, Pavinato OS, Teixeira Filho MCM (2020) Inoculation with growth-promoting bacteria associated with the reduction of phosphate fertilization in sugarcane. Front environ sci 8:32. https://doi.org/10.3389/fenvs.2020.00032

    Article  Google Scholar 

  25. Mawarda PC, Le Roux X, Dirk van Elsas J, Salles JF (2020) Deliberate introduction of invisible invaders: a critical appraisal of the impact of microbial inoculants on soil microbial communities. Soil Biol Biochem 148:107874. https://doi.org/10.1016/j.soilbio.2020.107874

    Article  CAS  Google Scholar 

  26. Jack CN, Petipas RH, Cheeke TE, Rowland JL, Friesen ML (2020) Microbial inoculants: silver bullet or microbial Jurassic Park? Trends Microbiol 4:299–208. https://doi.org/10.1016/j.tim.2020.11.006

    Article  CAS  Google Scholar 

  27. Wang Z, Chen Z, Kowalchuk GA, Xu Z, Fu X, Kuramae EE (2021) Succession of the resident soil microbial community in response to periodic inoculations. AEM 87:e00046-e121. https://doi.org/10.1128/AEM.00046-21

    Article  CAS  Google Scholar 

  28. Estrada-Bonilla GA, Durrer A, Cardoso EJBN (2021) Use of compost and phosphate-solubilizing bacteria affect sugarcane mineral nutrition, phosphorus availability, and the soil bacterial community. Appl Soil Ecol 157:103760. https://doi.org/10.1016/j.apsoil.2020.103760

    Article  Google Scholar 

  29. Lopes CM, Silva AMM, Estrada-Bonilla GA, Ferraz-Almeida R, Vieira JLV, Otto R, Vitti GC, Cardoso EJBN (2021) Improving the fertilizer value of sugarcane wastes through phosphate rock amendment and phosphate-solubilizing bacteria inoculation. J Clean Prod 298:126821. https://doi.org/10.1016/j.jclepro.2021.126821

    Article  CAS  Google Scholar 

  30. Soil Science Division Staff (2017) C. Ditzler, K. Scheffe, and H.C. Monger (ed) Soil survey manual. USDA Handbook 18. Government Printing Office, Washington, D.C. Accessed 13 Nov 2020

  31. Embrapa (2018) Brazilian system of soil classification, 5th edn. Embrapa, Rio Janeiro, p 356

  32. Estrada-Bonilla GA, Lopes CM, Durrer A, Alves PRL, Passaglia N, Cardoso EJBN (2017) Effect of phosphate-solubilizing bacteria on phosphorus dynamics and the bacterial community during composting of sugarcane industry waste. Syst Appl Microbiol 40:308–313. https://doi.org/10.1016/j.syapm.2017.05.003

    Article  CAS  PubMed  Google Scholar 

  33. Scarpare FV, Hernandes TAD, Ruiz-Corrêa ST, Picoli MCA, Scanlon BR, Chagas MF, Duft DG, de Fátima CT (2016) Sugarcane land use and water resources assessment in the expansion area in Brazil. J Clean Prod 133:1318–1327. https://doi.org/10.1016/j.jclepro.2016.06.074

    Article  Google Scholar 

  34. INMET - Instituto Nacional de Meteorologia [National Institute of Meteorology]. https://bdmep.inmet.gov.br/. Accessed 27 Feb 2018

  35. van Raij B, Andrade JC, Cantarella H, Quaggio JÁ (2001) Análise química para avaliação da fertilidade de solos tropicais = Chemical analysis for fertility assessment of tropical soils. Instituto Agronômico de Campinas, Campinas

  36. Walkley AJ, Black IA (1934) Estimation of soil organic carbon by the chromic acid titration method. Soil Sci 37:29–38

    Article  CAS  Google Scholar 

  37. Muyzer G (1993) Profiling of complex microbial populations by denaturing gradient gel electrophoresis analysis of polymerase chain reaction-amplified genes coding for 16S rRNA. AEM 59:695–700

    Article  CAS  Google Scholar 

  38. Gardes M, Bruns TD (1993) ITS primers with enhanced specificity for basidiomycetes – application to the identification of mycorrhizae and rusts. Mol Ecol 2:113–118. https://doi.org/10.1111/j.1365-294X.1993.tb00005.x

    Article  CAS  PubMed  Google Scholar 

  39. Sakurai M, Wasaki J, Tomizawa Y, Shinano T, Osaki M (2008) Analysis of bacterial communities on alkaline phosphatase in soil supplied with organic matter. Soil Sci Plant Nutr 54:62–71. https://doi.org/10.1111/j.1747-0765.2007.00210.x

    Article  CAS  Google Scholar 

  40. Vollú R, Cotta SR, Jurelevicius D, Leite DCDA, Parente CET, Malm O, Martins DC, Resende AV, Marriel IE, Seldin L (2018) Response of the bacterial communities associated with maize rhizosphere to poultry litter as an organomineral fertilizer. Front Environ Sci 6:118. https://doi.org/10.3389/fenvs.2018.00118

    Article  Google Scholar 

  41. Gaiero JR, Tosi M, Bent E, Boitt G, Khosla K, Turner BL, Richardson AE, Condron LM, Dunfield KE (2021) Soil microbial communities influencing organic phosphorus mineralization in a coastal dune chronosequence in New Zealand. FEMS Microbiol Ecol 97:fiab034. https://doi.org/10.1093/femsec/fiab034

    Article  CAS  PubMed  Google Scholar 

  42. Bolyen E, Rideout JR, Dillon MR et al (2019) Reproducible, interactive, scalable and extensible microbiome data science using QIIME 2. Nat Biotechnol 37:852–857. https://doi.org/10.1038/s41587-019-0209-9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Callahan BJ, McMurdie PJ, Rosen MJ, Han AW, Johnson AJA, Holmes SP (2016) DADA2: high-resolution sample inference from Illumina amplicon data. Nat Methods 13:581–583. https://doi.org/10.1038/nmeth.3869

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Katoh K (2002) MAFFT: a novel method for rapid multiple sequence alignment based on fast Fourier transform. Nucleic Acids Res 30:3059–3066. https://doi.org/10.1093/nar/gkf436

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Bokulich NA, Kaehler BD, Rideout JR et al (2018) Optimizing taxonomic classification of marker-gene amplicon sequences with QIIME 2’s q2-feature-classifier plugin. Microbiome 6:1–17. https://doi.org/10.1186/s40168-018-0470-z

    Article  Google Scholar 

  46. Quast C, Pruesse E, Yilmaz P, Gerken J, Schweer T, Yarka P, Peplies J, Glöckner FO (2013) The SILVA ribosomal RNA gene database project: improved data processing and web-based tools. Nucleic Acids Res 41:590–596. https://doi.org/10.1093/nar/gks1219

    Article  CAS  Google Scholar 

  47. Nilsson RH, Larsson KH, Taylor AFS, Bengtsson-Palme J, Jeppsen TS, Schigel D, Kennedy P, Picard K, Glöckner FO, Tedersoo L, Saar I, Kõljalg U, Abarenkov K (2019) The UNITE database for molecular identification of fungi: handling dark taxa and parallel taxonomic classifications. Nucleic Acids Res 47:D259–D264. https://doi.org/10.1093/nar/gky1022

    Article  CAS  PubMed  Google Scholar 

  48. Douglas GM, Maffei VJ, Zaneveld JR et al (2020) PICRUSt2 for prediction of metagenome functions. Nat Biotechnol 38:685–688. https://doi.org/10.1038/s41587-020-0548-6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Trivedi P, Delgado-Baquerizo M, Trivedi C, Hu H, Anderson IC, Jeffries TC, Zhou J, Singh BK (2016) Microbial regulation of the soil carbon cycle: evidence from gene–enzyme relationships. ISME J 10:2593–2604. https://doi.org/10.1038/ismej.2016.65

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Liang JL, Liu J, Jia P, Yang TT, Zeng QW, Zhang SC, Liao B, Shu WS, Li JT (2020) Novel phosphate-solubilizing bacteria enhance soil phosphorus cycling following ecological restoration of land degraded by mining. ISME J 14:1600–1613. https://doi.org/10.1038/s41396-020-0632-4

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Nguyen NH, Song Z, Bates ST, Branco S, Tedersoo L, Menke J, Schilling js, Kennedy PG, (2016) FUNGuild: an open annotation tool for parsing fungal community datasets by ecological guild. Fungal Ecol 20:241–248. https://doi.org/10.1016/j.funeco.2015.06.006

    Article  Google Scholar 

  52. McMurdie PJ, Holmes S (2014) Waste not, want not: why rarefying microbiome data is inadmissible. PLoS Comput Biol 10:e1003531. https://doi.org/10.1371/journal.pcbi.1003531

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. McMurdie PJ, Holmes S (2013) phyloseq: an R package for reproducible interactive analysis and graphics of microbiome census data. PLoS ONE 8:e61217. https://doi.org/10.1371/journal.pone.0061217

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Bisanz JE (2019) Tutorial : integrating QIIME2 and R for data visualization and analysis using. January, 2021

  55. Faith DP (1992) Conservation evaluation and phylogenetic diversity. Biol Conserv 61:1–10. https://doi.org/10.1016/0006-3207(92)91201-3

    Article  Google Scholar 

  56. Anderso MJ (2001) A new method for non-parametric multivariate analysis of variance. Austral Ecol 26:32–46. https://doi.org/10.1111/j.1442-9993.2001.01070.pp.x

    Article  Google Scholar 

  57. Oksanen J, Blanchet FG, Friendly M, Kindt R, Legendre P, Mcglinn D, Minchin PR, O’hara RB, Simpson GL, Solymos P, Henry M, Stevens H, Szoecs E, Maintainer HW (2019) Package “vegan” Title Community Ecology Package. Community Ecol Packag 2:1–297

    Google Scholar 

  58. Wickham, H. (2016) ggplot2: Create elegant data visualisations using the grammar of graphics. 2nd. Ed. Springer, ISSN 2197–5744. https://doi.org/10.1007/978-3-319-24277-4

  59. Ramette A (2007) Multivariate analyses in microbial ecology. FEMS Microbiol Ecol 62:142–160. https://doi.org/10.1111/j.1574-6941.2007.00375.x

    Article  CAS  PubMed  Google Scholar 

  60. Robinson MD, McCarthy DJ, Smyth GK (2010) edgeR: a Bioconductor package for differential expression analysis of digital gene expression data. Bioinformatics 26:139–140. https://doi.org/10.1093/bioinformatics/btp616

    Article  CAS  PubMed  Google Scholar 

  61. Benjamini Y, Hochberg Y (1995) Controlling the false discovery rate: a practical and powerful approach to multiple testing. J R Stat Soc Ser B Methodol 57:289–300. https://doi.org/10.1111/j.2517-6161.1995.tb02031.x

    Article  Google Scholar 

  62. Pollard KS, Dudoit S, van der Laan MJ (2005). Multiple testing procedures: R multtest package and applications to genomics. In Gentleman R, Carey V, Huber W, Irizarry R, Dudoit S (eds) Bioinformatics and Computational Biology Solutions Using R and Bioconductor. Springer.

  63. R Core Team (2020) R: a language and environment for statistical computing. https://www.r-project.org/. Accessed Jan 2021

  64. Rilling JI, Acuña JJ, Nannipieri P, Cassan F et al (2019) Current opinion and perspectives on the methods for tracking and monitoring plant growth-promoting bacteria. Soil Biol Biochem 130:205–219. https://doi.org/10.1016/j.soilbio.2018.12.012

    Article  CAS  Google Scholar 

  65. Finkel OM, Castrillo G, Herrera Paredes S, Salas González I, Dangl JL (2017) Understanding and exploiting plant beneficial microbes. Curr Opin Plant Biol 38:155–163. https://doi.org/10.1016/j.pbi.2017.04.018

    Article  PubMed  PubMed Central  Google Scholar 

  66. Kaminsky LM, Trexler RV, Malik RJ, Hockett KL, Bell TH (2019) The inherent conflicts in developing soil microbial inoculants. Trends Biotechnol 37:140–151. https://doi.org/10.1016/j.tibtech.2018.11.011

    Article  CAS  PubMed  Google Scholar 

  67. Romano I, Ventorino V, Pepe O (2020) Effectiveness of plant beneficial microbes: overview of the methodological approaches for the assessment of root colonization and persistence. Front Plant Sci 11:6. https://doi.org/10.3389/fpls.2020.00006

    Article  PubMed  PubMed Central  Google Scholar 

  68. van Elsas JD, Chiurazzi M, Mallon CA, Elhottovã D, Krištůfek V, Salles JF (2012) Microbial diversity determines the invasion of soil by a bacterial pathogen. Proc Natl Acad Sci USA 109:1159–1164. https://doi.org/10.1073/pnas.1109326109

    Article  PubMed  PubMed Central  Google Scholar 

  69. Liu J, Qi W, Li Q, Wang SG, Song C, Yuan XZ (2020) Exogenous phosphorus-solubilizing bacteria changed the rhizosphere microbial community indirectly. 3 Biotech 10:164. https://doi.org/10.1007/s13205-020-2099-4

    Article  PubMed  PubMed Central  Google Scholar 

  70. Marks BB, Megías M, Ollero FJ et al (2015) Maize growth promotion by inoculation with Azospirillum brasilense and metabolites of Rhizobium tropici enriched on lipo-chitooligosaccharides (LCOs). AMB Expr 5:71. https://doi.org/10.1186/s13568-015-0154-z

    Article  CAS  Google Scholar 

  71. Fukami J, Ollero FJ, Megías M, Hungria M (2017) Phytohormones and induction of plant-stress tolerance and defense genes by seed and foliar inoculation with Azospirillum brasilense cells and metabolites promote maize growth. AMB Expr 7:153. https://doi.org/10.1186/s13568-017-0453-7

    Article  CAS  Google Scholar 

  72. Antunes JEL, Freitas ADS, Oliveira LMS et al (2019) Sugarcane inoculated with endophytic diazotrophic bacteria: effects on yield, biological nitrogen fixation and industrial characteristics. An Acad Bras Ciênc 91:e20180990. https://doi.org/10.1590/0001-3765201920180990

    Article  CAS  PubMed  Google Scholar 

  73. Bindraban PS, Dimkpa CO, Pandey R (2020) Exploring phosphorus fertilizers and fertilization strategies for improved human and environmental health. Biol Fertil Soils 56:299–317. https://doi.org/10.1007/s00374-019-01430-2

    Article  CAS  Google Scholar 

  74. Gyaneshwar P, Kumar GN, Parekh LJ, Poole PS (2002) Role of soil microorganisms in improving P nutrition of plants. Plant Soil 245:133–143. https://doi.org/10.1023/A:1020663916259

    Article  Google Scholar 

  75. Wu X, Ren L, Luo L, Zhang J, Zhang L, Huang H (2020) Bacterial and fungal community dynamics and shaping factors during agricultural waste composting with zeolite and biochar addition. Sustainability 12:7082. https://doi.org/10.3390/su12177082

    Article  CAS  Google Scholar 

  76. Chen YP, Rekha PD, Arun AB, Shen FT, Lai WA, Young CC (2006) Phosphate solubilizing bacteria from subtropical soil and their tricalcium phosphate solubilizing abilities. Appl Soil Ecol 34:33–41. https://doi.org/10.1016/j.apsoil.2005.12.002

    Article  Google Scholar 

  77. Vyas P, Gulati A (2009) Organic acid production in vitro and plant growth promotion in maize under controlled environment by phosphate-solubilizing fluorescent Pseudomonas. BMC Microbiol 9:174. https://doi.org/10.1186/1471-2180-9-174

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Santos LF, Lana RP, Da Silva MCS, Veloso TGR, Kasuya MCM, Riberio KG (2020) Effective microorganisms inoculant: diversity and effect on the germination of palisade grass seeds. An Acad Bras Ciênc 92:e20180426. https://doi.org/10.1590/0001-3765202020180426

    Article  CAS  PubMed  Google Scholar 

  79. Trabelsi D, Mhamdi R (2013) Microbial inoculants and their impact on soil microbial communities: a review. Biomed Res Int 2013:863240. https://doi.org/10.1155/2013/863240

    Article  PubMed  PubMed Central  Google Scholar 

  80. Li JT, Lu JL, Wang HY et al (2021) A comprehensive synthesis unveils the mysteries of phosphate-solubilizing microbes. Biol. https://doi.org/10.1111/brv.12779

    Article  Google Scholar 

  81. Griffiths RI, Whiteley AS, O’Donnell AG, Bailey MJ (2003) Influence of depth and sampling time on bacterial community structure in an upland grassland soil. FEMS Microbiol Ecol 43:35–43. https://doi.org/10.1111/j.1574-6941.2003.tb01043.x

    Article  CAS  PubMed  Google Scholar 

  82. Allison SD, Martiny JBH (2008) Resistance, resilience, and redundancy in microbial communities. PNAS 105:11512–11519. https://doi.org/10.1073/pnas.0801925105

    Article  PubMed  PubMed Central  Google Scholar 

  83. Griffiths BS, Philippot L (2013) Insights into the resistance and resilience of the soil microbial community. FEMS Microbiol Rev 37:112–129. https://doi.org/10.1111/j.1574-6976.2012.00343.x

    Article  CAS  PubMed  Google Scholar 

  84. Lourenço KS, Suleiman AKA, Pijl A et al (2018) Resilience of the resident soil microbiome to organic and inorganic amendment disturbances and to temporary bacterial invasion. Microbiome 6:142. https://doi.org/10.1186/s40168-018-0525-1

    Article  PubMed  PubMed Central  Google Scholar 

  85. Yeoh YK, Paungfoo-Lonhienne C, Dennis PG et al (2015) The core root microbiome of sugarcanes cultivated under varying nitrogen fertilizer application. Environ Microbiol 18:1338–1351. https://doi.org/10.1111/1462-2920.12925

    Article  PubMed  Google Scholar 

  86. Niu H, Pang Z, Fallah N et al (2021) Diversity of microbial communities and soil nutrients in sugarcane rhizosphere soil under water soluble fertilizer. PLoS ONE 16:e0245626. https://doi.org/10.1371/journal.pone.0245626

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Liang B, Wang LY, Mbadinga SM, Liu JF, Yang SZ, Gu JD, Mu BZ (2015) Anaerolineaceae and Methanosaeta turned to be the dominant microorganisms in alkanes-dependent methanogenic culture after long-term of incubation. AMB Express 5:37. https://doi.org/10.1186/s13568-015-0117-4

    Article  CAS  PubMed Central  Google Scholar 

  88. Aanderud ZT, Saurey S, Ball BA et al (2018) Stoichiometric shifts in soil C:N: P promote bacterial taxa dominance, maintain biodiversity, and deconstruct community assemblages. Front Microbiol 9:1401. https://doi.org/10.3389/fmicb.2018.01401

    Article  PubMed  PubMed Central  Google Scholar 

  89. Cheng J, Chen Y, He T, Liao R, Liu R, Yi M, Huang L, Yang Z, Fu T, Li X (2017) Soil nitrogen leaching decreases as biogas slurry DOC/N ratio increases. Appl Soil Ecol 111:105–113. https://doi.org/10.1016/j.apsoil.2016.12.001

    Article  Google Scholar 

  90. Mallon CA, Le Roux X, van Doorn GS, Dini-Andreote F, Poly F, Salles JF (2018) The impact of failure: unsuccessful bacterial invasions steer the soil microbial community away from the invader’s niche. ISME J 12:728–741. https://doi.org/10.1038/s41396-017-0003-y

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Bernal, MP, Sommer, SG, Chadwick, D, Qing, C, Guoxue, L, Michel Jr, FC (2017) Current approaches and future trends in compost quality criteria for agronomic, environmental, and human health benefits. In Sparks DL (eds) Advances in agronomy. Academic Press, pp 43–233

  92. Obermeier MM, Minarsch EML, Durai Raj AC, Rineau F, Schröder P (2020) Changes of soil-rhizosphere microbiota after organic amendment application in a Hordeum vulgare L. short-term greenhouse experiment. Plant Soil 455:489–506. https://doi.org/10.1007/s11104-020-04637-7

    Article  CAS  Google Scholar 

  93. Büttner D, Bonas U (2010) Regulation and secretion of Xanthomonas virulence factors. FEMS Microbiol Rev 34:107–133. https://doi.org/10.1111/j.1574-6976.2009.00192.x

    Article  CAS  PubMed  Google Scholar 

  94. Silva LCC, Targino BN, Furtado MM, de Oliveira Pinto MA, Rodarte MP, Hungaro HM (2017) Xanthan: biotechnological production and applications. In Da Cruz JC, Sérvulo EFC, De Castro AM (eds) Microbial Production of Food Ingredients and Additives. Academic Press, pp 385–422

  95. Diyarova DK (2016) The role of wood-decaying fungi in the carbon cycle of forest ecosystems and the main ecological factors. Eur Sci J 12:162–166. https://doi.org/10.19044/esj.2016.v12n10p%25p

    Article  Google Scholar 

  96. Peralta RM, da Silva BP, Côrrea RCG, Kato CG, Seixas FAV, Bracht A (2017) Enzymes from basidiomycetes—peculiar and efficient tools for biotechnology. In Fogarty WM, Kelly CT (eds) Biotechnology of microbial enzymes. Academic Press, pp 119–149

  97. Yang W, Jing X, Guan Y, Zhai C, Wang T, Shi D, Sun W, Gu S (2019) Response of fungal communities and co-occurrence network patterns to compost amendment in black soil of Northeast China. Front microbiol 10:1562. https://doi.org/10.3389/fmicb.2019.01562

    Article  PubMed  PubMed Central  Google Scholar 

  98. Sun RB, Dsouza M, Gilbert JA, Guo XS, Wang DZ, Guo ZB, Ni Y, Chu H (2016) Fungal community composition in soils subjected to long-term chemical fertilization is most influenced by the type of organic matter. Environ Microbiol 18:5137–5150. https://doi.org/10.1111/1462-2920.13512

    Article  CAS  PubMed  Google Scholar 

  99. Amprayn KO, Rose MT, Kecskés M, Pereg L, Nguyen HT, Kennedy IR (2012) Plant growth promoting characteristics of soil yeast (Candida tropicalis HY) and its effectiveness for promoting rice growth. Appl Soil Ecol 61:295–299. https://doi.org/10.1016/j.apsoil.2011.11.009

    Article  Google Scholar 

  100. Streletskii RA, Kachalkin AV, Glushakova AM, Demin VV, Chernov IY (2016) Quantitative determination of indole-3-acetic acid in yeasts using high performance liquid chromatography–tandem mass spectrometry. Microbiology 85:727–736. https://doi.org/10.1134/S0026261716060187

    Article  CAS  Google Scholar 

  101. Fu SF, Sun PF, Lu HY, Wei JY, Xiao HS, Fang WT, Cheng BY, Chou JY (2016) Plant growth-promoting traits of yeasts isolated from the phyllosphere and rhizosphere of Drosera spatulata Lab. Fungal Biol 120:433–448. https://doi.org/10.1016/j.funbio.2015.12.006

    Article  CAS  PubMed  Google Scholar 

  102. Yurkov AM (2018) Yeasts of the soil–obscure but precious. Yeast 35:369–378. https://doi.org/10.1002/yea.3310

    Article  CAS  PubMed  Google Scholar 

  103. Andrews JH, Harris RF (1986) r- and K-selection and microbial ecology. In: Marshall KC (ed) Advances in Microbial Ecology. Springer, Boston, pp 99–147

    Chapter  Google Scholar 

  104. Fierer N, Bradford MA, Jackson RB (2007) Toward an ecological classification of soil bacteria. Ecology 88:1354–1364. https://doi.org/10.1890/05-1839

    Article  PubMed  Google Scholar 

  105. Dickie IA (2007) Host preference, niches and fungal diversity. New Phytol 174:230–233. https://doi.org/10.1111/j.1469-8137.2007.02055.x

    Article  PubMed  Google Scholar 

  106. Ceci A, Pinzari F, Russo F, Maggi O, Persiani AM (2018) Saprotrophic soil fungi to improve phosphorus solubilisation and release: In vitro abilities of several species. Ambio 47:30–40. https://doi.org/10.1007/s13280-017-0972-0

    Article  CAS  PubMed  Google Scholar 

  107. Wang Z, Gao W, Liu X, Chen P, Lu W, Wang F, Li H, Sun Q, Zhang H (2019) Efficient production of polysaccharide by Chaetomium globosum CGMCC 6882 through co-culture with host plant Gynostemma pentaphyllum. Bioprocess Biosyst Eng 42:1731–1738. https://doi.org/10.1007/s00449-019-02169-8

    Article  CAS  PubMed  Google Scholar 

  108. Dogaris I, Vakontios G, Kalogeris E, Mamma D, Kekos D (2009) Induction of cellulases and hemicellulases from Neurospora crassa under solid-state cultivation for bioconversion of sorghum bagasse into ethanol. Ind Crops Prod 29:404–411. https://doi.org/10.1016/j.indcrop.2008.07.008

    Article  CAS  Google Scholar 

  109. Pamidipati S, Ahmed A (2017) Degradation of lignin in agricultural residues by locally isolated fungus Neurospora discreta. Appl Biochem Biotechnol 181:1561–1572. https://doi.org/10.1007/s12010-016-2302-6

    Article  CAS  PubMed  Google Scholar 

  110. Koyama A, Wallenstein MD, Simpson RT, Moore JC (2013) Carbon-degrading enzyme activities stimulated by increased nutrient availability in arctic tundra soils. PLoS ONE 8:e77212. https://doi.org/10.1371/journal.pone.0077212

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Nannipieri P, Giagnoni L, Landi L, Renella G (2011) Role of phosphatase enzymes in soil. In: Bunemman EK, Oberson A, Frossard E (eds) Phosphorus in action. Springer, Berlin, pp 215–243

    Chapter  Google Scholar 

  112. Mickan BS, Abbott LK, Fan J, Hart MM, Siddique KH, Solaiman ZM, Jenkins SN (2018) Application of compost and clay under water-stressed conditions influences functional diversity of rhizosphere bacteria. Biol Fertil Soils 54:55–70. https://doi.org/10.1007/s00374-017-1238-5

    Article  Google Scholar 

Download references

Acknowledgements

We are grateful to the Sugar Cane Plant “Usina Estiva” for providing field and operational support, as well as the Company Baraúna Soluções Biológicas for partial funding of this project. We thank Denise L Mescolotti, Fernando Baldesin, Maiele C Santana MSc., Bruna AB Lopes MSc., and Arthur PA Pereira Ph.D. for technical assistance. EJBNC acknowledges a research productivity fellowship from CNPq (no. 305193/2016-3). FPM acknowledges FAPESP for its postdoctoral scholarship (no. 2019/27682-0). SRC and HPF acknowledge CAPES for their postdoctoral scholarship and master’s grant, respectively.

Funding

This work was supported by “Financiadora de Estudos e Projetos” (FINEP) (no. 01.13.0209.00) and “Fundação de Amparo à Pesquisa do Estado de São Paulo” (FAPESP) (no. 2016/18944–3).

Author information

Authors and Affiliations

Authors

Contributions

Conceptualization: GAEB, CML and EJBNC; data curation: AMMS, GAEB and CML; formal analysis: AMMS, GAEB, FPM and HPF; investigation: AMMS, YFR and SRC; supervision: EJBNC and SRC; writing-original draft: AMMS, GAEB, SRC and FPM; writing-review and editing: AMMS, GAEB, SRC, FPM, HPF and EJBNC.

Corresponding author

Correspondence to German A. Estrada-Bonilla.

Ethics declarations

Ethics Approval

Not applicable.

Consent to Participate

The authors declare their consent to participate in the present work.

Consent for Publication

The authors declare their consent for the publication of the present work.

Conflict of Interest

The authors declare no competing interests.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (PDF 1.01 MB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Silva, A.M.M., Estrada-Bonilla, G.A., Lopes, C.M. et al. Does Organomineral Fertilizer Combined with Phosphate-Solubilizing Bacteria in Sugarcane Modulate Soil Microbial Community and Functions?. Microb Ecol 84, 539–555 (2022). https://doi.org/10.1007/s00248-021-01855-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00248-021-01855-z

Keywords

Navigation