Skip to main content
Log in

Ecological Contacts and Host Specificity Promote Replacement of Nutritional Endosymbionts in Ticks

  • Host Microbe Interactions
  • Published:
Microbial Ecology Aims and scope Submit manuscript

Abstract

Symbiosis with vitamin-provisioning microbes is essential for the nutrition of animals with some specialized feeding habits. While coevolution favors the interdependence between symbiotic partners, their associations are not necessarily stable: Recently acquired symbionts can replace ancestral symbionts. In this study, we demonstrate successful replacement by Francisella-like endosymbionts (-LE), a group of B-vitamin-provisioning endosymbionts, across tick communities driven by horizontal transfers. Using a broad collection of Francisella-LE-infected tick species, we determined the diversity of Francisella-LE haplotypes through a multi-locus strain typing approach and further characterized their phylogenetic relationships and their association with biological traits of their tick hosts. The patterns observed showed that Francisella-LE commonly transfer through similar ecological networks and geographic distributions shared among different tick species and, in certain cases, through preferential shuffling across congeneric tick species. Altogether, these findings reveal the importance of geographic, ecological, and phylogenetic proximity in shaping the replacement pattern in which new nutritional symbioses are initiated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

adapted from Burger et al. [34], and all congeneric tick species were arbitrarily considered as equally distant

Fig. 3

Similar content being viewed by others

Data Availability

Nucleotide sequences of Francisella-LE were deposited in the GenBank nucleotide database (16S rRNA: MW287912-MW287986; rpoB: MW286019-MW286093; groEL: MW285869-MW285943; ftsZ: MW285794-MW285868; gyrB: MW285944-MW286018).

Code Availability

Scripts used for the statistical analyses are available on GitHub (https://github.com/mariebuysse/pending).

References

  1. Duron O, Gottlieb Y (2020) Convergence of nutritional symbioses in obligate blood-feeders. Trends Parasitol. https://doi.org/10.1016/j.pt.2020.07.007

    Article  PubMed  Google Scholar 

  2. Moran NA, McCutcheon JP, Nakabachi A (2008) Genomics and evolution of heritable bacterial symbionts. Ann Rev Genet 42:165–190. https://doi.org/10.1146/annurev.genet.41.110306.130119

    Article  CAS  PubMed  Google Scholar 

  3. Wernegreen JJ (2012) Endosymbiosis. Curr Biol 22:555–561. https://doi.org/10.1016/j.cub.2012.06.010

    Article  CAS  Google Scholar 

  4. Bennett GM, Moran NA (2015) Heritable symbiosis : the advantages and perils of an evolutionary rabbit hole. PNAS 112:10169–10176. https://doi.org/10.1073/pnas.1421388112

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. McCutcheon JP, Boyd BM, Dale C (2019) The life of an insect endosymbiont from the cradle to the grave. Curr Biol 29:485–495. https://doi.org/10.1016/j.cub.2019.03.032

    Article  CAS  Google Scholar 

  6. Sudakaran S, Kost C, Kaltenpoth M (2017) Symbiont acquisition and replacement as a source of ecological innovation. Trends Microbiol 25. https://doi.org/10.1016/j.tim.2017.02.014

  7. Binetruy F, Buysse M, Lejarre Q et al (2020) Microbial community structure reveals instability of nutritional symbiosis during the evolutionary radiation of Amblyomma ticks. Mol Ecol 29:1016–1029. https://doi.org/10.1111/mec.15373

    Article  PubMed  Google Scholar 

  8. Duron O, Binetruy F, Noel V et al (2017) Evolutionary changes in symbiont community structure in ticks. Mol Ecol 26:2905–2921. https://doi.org/10.1111/mec.14094

    Article  CAS  PubMed  Google Scholar 

  9. Gerhart JG, Auguste Dutcher H, Brenner AE et al (2018) Multiple acquisitions of pathogen-derived Francisella endosymbionts in soft ticks. Genome Biol Evol 10:607–615. https://doi.org/10.1093/gbe/evy021

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Sterkel M, Oliveira JHM, Bottino-Rojas V, et al (2017) The dose makes the poison: Nutritional overload determines the life traits of blood-feeding Arthropods. Trends Parasitol 33:633–644. https://doi.org/10.1016/j.pt.2017.04.008

  11. Gulia-Nuss M, Nuss AB, Meyer JM, et al (2016) Genomic insights into the Ixodes scapularis tick vector of Lyme disease Nat Commun 7 https://doi.org/10.1038/ncomms10507

  12. Jia N, Wang J, Shi W et al (2020) Large-scale comparative analyses of tick genomes elucidate their genetic diversity and vector capacities. Cell 182(1328):1340.e13. https://doi.org/10.1016/j.cell.2020.07.023

    Article  CAS  Google Scholar 

  13. Duron O, Morel O, Noël V et al (2018) Tick-bacteria mutualism depends on B vitamin synthesis pathways. Curr Biol 28:1–7. https://doi.org/10.1016/j.cub.2018.04.038

    Article  CAS  Google Scholar 

  14. Gerhart JG, Moses AS, Raghavan R (2016) A Francisella-like endosymbiont in the Gulf Coast tick evolved from a mammalian pathogen. Sci Rep 6:1–6. https://doi.org/10.1038/srep33670

    Article  CAS  Google Scholar 

  15. Gottlieb Y, Lalzar I, Klasson L (2015) Distinctive genome reduction rates revealed by genomic analyses of two Coxiella-like endosymbionts in ticks. Genome Biol Evol 7:1779–1796. https://doi.org/10.1093/gbe/evv108

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Guizzo MG, Parizi LF, Nunes RD et al (2017) A Coxiella mutualist symbiont is essential to the development of Rhipicephalus microplus. Sci Rep 7:1–10. https://doi.org/10.1038/s41598-017-17309-x

    Article  CAS  Google Scholar 

  17. Smith TA, Driscoll T, Gillespie JJ, Raghavan R (2015) A Coxiella-like endosymbiontis a potential vitamin source for the lone star tick. Genome Biol Evol 7:831–838. https://doi.org/10.1093/gbe/evv016

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Tsementzi D, Castro Gordillo J, Mahagna M et al (2018) Comparison of closely related, uncultivated Coxiella tick endosymbiont population genomes reveals clues about the mechanisms of symbiosis. Environ Microbiol 20:1751–1764. https://doi.org/10.1111/1462-2920.14104

    Article  CAS  PubMed  Google Scholar 

  19. Ben-Yosef M, Rot A, Mahagna M et al (2020) Coxiella-Like endosymbiont of Rhipicephalus sanguineus is required for physiological processes during ontogeny. Front Microbiol 11:1–16. https://doi.org/10.3389/fmicb.2020.00493

    Article  Google Scholar 

  20. Duron O, Noël V, McCoy KD et al (2015) The recent evolution of a maternally-inherited endosymbiont of ticks led to the emergence of the Q fever pathogen, Coxiella burnetii. PLoS Pathog 11:1–23. https://doi.org/10.1371/journal.ppat.1004892

    Article  CAS  Google Scholar 

  21. Li L-H, Zhang Y, Zhu D (2018) Effects of antibiotic treatment on the fecundity of Rhipicephalus haemaphysaloides ticks. Parasit Vectors 11:242. https://doi.org/10.1186/s13071-018-2807-7

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Zhang C-M, Li N-X, Zhang T-T et al (2017) Endosymbiont CLS-HI plays a role in reproduction and development of Haemaphysalis longicornis. Exp Appl Acarol 73:429–438. https://doi.org/10.1007/s10493-017-0194-y

    Article  PubMed  Google Scholar 

  23. Zhong J, Jasinskas A, Barbour AG (2007) Antibiotic treatment of the tick vector Amblyomma americanum reduced reproductive fitness. PLoS ONE 2:1–7. https://doi.org/10.1371/journal.pone.0000405

    Article  CAS  Google Scholar 

  24. Azagi T, Klement E, Perlman G et al (2017) Francisella-like endosymbionts and Rickettsia species in local and imported Hyalomma ticks. Appl Environ Microbiol 83:1–14

    Article  Google Scholar 

  25. Lalzar I, Harrus S, Mumcuoglu KY, Gottlieb Y (2012) Composition and seasonal variation of Rhipicephalus turanicus and Rhipicephalus sanguineus bacterial communities. Appl Environ Microbiol 78:4110–4116. https://doi.org/10.1128/AEM.00323-12

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Baldo L, Ayoub NA, Hayashi CY et al (2008) Insight into the routes of Wolbachia invasion: high levels of horizontal transfer in the spider genus Agelenopsis revealed by Wolbachia strain and mitochondrial DNA diversity. Mol Ecol 17:557–569. https://doi.org/10.1111/j.1365-294X.2007.03608.x

    Article  CAS  PubMed  Google Scholar 

  27. Russell JA, Moreau CS, Goldman-Huertas B et al (2009) Bacterial gut symbionts are tightly linked with the evolution of herbivory in ants. Proc Natl Acad Sci U S A 106:21236–21241. https://doi.org/10.1073/pnas.0907926106

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Duron O, Wilkes TE, Hurst GDD (2010) Interspecific transmission of a male-killing bacterium on an ecological timescale. Ecol Lett 13:1139–1148. https://doi.org/10.1111/j.1461-0248.2010.01502.x

    Article  PubMed  Google Scholar 

  29. Vavre F, Fleury F, Lepetit D et al (1999) Phylogenetic evidence for horizontal transmission of Wolbachia in host-parasitoid associations. Mol Biol Evol 16:1711–1723. https://doi.org/10.1093/oxfordjournals.molbev.a026084

    Article  CAS  PubMed  Google Scholar 

  30. Kumar S, Tamura K, Nei M (2004) MEGA3: integrated software for Molecular Evolutionary Genetics Analysis and sequence alignment. Brief Bioinform 5:150–163. https://doi.org/10.1093/bib/5.2.150

    Article  CAS  PubMed  Google Scholar 

  31. Sjödin A, Svensson K, Öhrman C, et al (2012) Genome characterisation of the genus Francisella reveals insight into similar evolutionary paths in pathogens of mammals and fish. BMC Genomics 13 https://doi.org/10.1186/1471-2164-13-268

  32. Castresana J (2000) Selection of conserved blocks from multiple alignments for their use in phylogenetic analysis. Mol Biol Evol 17:540–552. https://doi.org/10.1093/oxfordjournals.molbev.a026334

    Article  CAS  PubMed  Google Scholar 

  33. Martin DP, Lemey P, Lott M et al (2010) RDP3: a flexible and fast computer program for analyzing recombination. Bioinformatics 26:2462–2463. https://doi.org/10.1093/bioinformatics/btq467

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Burger TD, Shao R, Beati L et al (2012) Phylogenetic analysis of ticks (Acari: Ixodida) using mitochondrial genomes and nuclear rRNA genes indicates that the genus Amblyomma is polyphyletic. Mol Phylogenet Evol 64:45–55. https://doi.org/10.1016/j.ympev.2012.03.004

    Article  CAS  PubMed  Google Scholar 

  35. Balbuena JA, Míguez-Lozano R, Blasco-Costa I (2013) PACo: a novel procrustes application to cophylogenetic analysis. PLoS ONE 8 https://doi.org/10.1371/journal.pone.0061048

  36. Paradis E, Claude J, Strimmer K (2004) APE: analyses of phylogenetics and evolution in R language. Bioinformatics 20:289–290. https://doi.org/10.1093/bioinformatics/btg412

    Article  CAS  PubMed  Google Scholar 

  37. Oksanen AJ, Blanchet FG, Friendly M et al (2013) Vegan: community ecology package. Package Vegan

  38. Fritz SA, Purvis A (2010) Selectivity in mammalian extinction risk and threat types: a new measure of phylogenetic signal strength in binary traits. Conserv Biol 24:1042–1051. https://doi.org/10.1111/j.1523-1739.2010.01455.x

    Article  PubMed  Google Scholar 

  39. Felsenstein J (1985) Phylogenies and the comparative method. Am Nat 125:1–15. https://doi.org/10.1086/284325

    Article  Google Scholar 

  40. Orme D, Freckleton R, Thomas G et al (2013) The caper package: comparative analysis of phylogenetics and evolution in R. R Packag version 5:1–36

    Google Scholar 

  41. Hochberg Y (1988) A sharper Bonferroni procedure for multiple tests of significance. Biometrika 75:800–802. https://doi.org/10.1093/biomet/75.4.800

    Article  Google Scholar 

  42. Kugeler KJ, Mead PS, McGowan KL et al (2008) Isolation and characterization of a novel Francisella sp. from human cerebrospinal fluid and blood. J Clin Microbiol 46:2428–2431. https://doi.org/10.1128/JCM.00698-08

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Budachetri K, Browning RE, Adamson SW et al (2014) An insight into the microbiome of the Amblyomma maculatum (Acari: Ixodidae). J Med Entomol 51:119–129. https://doi.org/10.1603/me12223

    Article  CAS  PubMed  Google Scholar 

  44. Liu JN, Yu ZJ, Liu LM et al (2016) Identification, distribution and population dynamics of Francisella-like endosymbiont in Haemaphysalis doenitzi (Acari: Ixodidae). Sci Rep 6:1–9. https://doi.org/10.1038/srep35178

    Article  CAS  Google Scholar 

  45. Wright CL, Sonenshine DE, Gaff HD, Hynes WL (2015) Rickettsia parkeri transmission to Amblyomma americanum by cofeeding with Amblyomma maculatum (Acari: Ixodidae) and potential for spillover. J Med Entomol 52:1090–1095. https://doi.org/10.1093/jme/tjv086

    Article  CAS  PubMed  Google Scholar 

  46. Voordouw MJ (2015) Co-feeding transmission in Lyme disease pathogens. Parasitology 142:290–302. https://doi.org/10.1017/S0031182014001486

    Article  PubMed  Google Scholar 

  47. Suitor EC, Weiss E (1961) Isolation of a Rickettsialike microorganism (Wolbachia persica, n. sp.) from Argas persicus (Oken). J Infect Dis 108:95–106. https://www.jstor.org/stable/30099293

  48. Barker JR, Chong A, Wehrly TD et al (2009) The Francisella tularensis pathogenicity island encodes a secretion system that is required for phagosome escape and virulence. Mol Microbiol 74:1459–1470. https://doi.org/10.1111/j.1365-2958.2009.06947.x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Nano FE, Schmerk C (2007) The Francisella pathogenicity island. Ann N Y Acad Sci 1105:122–137. https://doi.org/10.1196/annals.1409.000

    Article  CAS  PubMed  Google Scholar 

  50. Binetruy F, Bailly X, Chevillon C et al (2019) Phylogenetics of the Spiroplasma ixodetis endosymbiont reveals past transfers between ticks and other arthropods. Ticks Tick Borne Dis 10:575–584. https://doi.org/10.1016/j.ttbdis.2019.02.001

    Article  PubMed  Google Scholar 

  51. Buysse M, Duron O (2018) Multi-locus phylogenetics of the Midichloria endosymbionts reveals variable specificity of association with ticks. Parasitology 1–10 https://doi.org/10.1017/S0031182018000793

  52. Šochová E, Husník F, Nováková E et al (2017) Arsenophonus and Sodalis replacements shape evolution of symbiosis in louse flies. PeerJ 2017:1–23. https://doi.org/10.7717/peerj.4099

    Article  CAS  Google Scholar 

  53. Boyd BM, Allen JM, Nguyen NP et al (2017) Primates, lice and bacteria: speciation and genome evolution in the symbionts of hominid lice. Mol Biol Evol 34:1743–1757. https://doi.org/10.1093/molbev/msx117

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Allen JM, Burleigh JG, Light JE, Reed DL (2016) Effects of 16S rDNA sampling on estimates of the number of endosymbiont lineages in sucking lice. PeerJ 2016. https://doi.org/10.7717/peerj.2187

  55. Hypša V, Křížek J (2007) Molecular evidence for polyphyletic origin of the primary symbionts of sucking lice (Phthiraptera, Anoplura). Microb Ecol 54:242–251. https://doi.org/10.1007/s00248-006-9194-x

    Article  CAS  PubMed  Google Scholar 

  56. Říhová J, Novaková E, Husník F, Hypša V (2017) Legionella becoming a mutualist: adaptive processes shaping the genome of symbiont in the louse Polyplax serrata. Genome Biol Evol 9:2946–2957. https://doi.org/10.1093/gbe/evx217

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Manzano-Marı́n A, Coeur d’acier A, Clamens AL, et al (2020) Serial horizontal transfer of vitamin-biosynthetic genes enables the establishment of new nutritional symbionts in aphids’ di-symbiotic systems. ISME J 14:259–273. https://doi.org/10.1038/s41396-019-0533-6

    Article  CAS  Google Scholar 

  58. Rosenblueth M, Sayavedra L, Sámano-Sánchez H et al (2012) Evolutionary relationships of flavobacterial and enterobacterial endosymbionts with their scale insect hosts (Hemiptera: Coccoidea). J Evol Biol 25:2357–2368. https://doi.org/10.1111/j.1420-9101.2012.02611.x

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

We thank D. Ayala, C. Chevillon, F. Delsuc, B. de Thoisy, S. Garnier, H. Hawlena, Q. Lejarre, K. McCoy, C. Paupy, O. Plantard, N. Rahola, S. Moutailler, C. Galon, and L. Vial.

Funding

This work has benefited from (1) an international grant (EVOSYM) co-managed by the Ministry of Science, Technology and Space (Israel) and the Centre National de la Recherche Scientifique (CNRS, France), from (2) “Investissements d’Avenir” managed by the Agence Nationale de la Recherche (ANR, France, Laboratoire d’Excellence CEBA, ANR-10-LABX-25–01), and from (3) the Israel Science Foundation (ISF grant No. 1074/18).

Author information

Authors and Affiliations

Authors

Contributions

Y.G. and O.D. designed the study. M.B., Y.G., and O.D. wrote the manuscript. M.B., F.B., and R.L. performed the molecular typing. M.B. and O.D. performed the phylogenetic and statistical analyses. All authors agreed on the final version of the manuscript.

Corresponding authors

Correspondence to Marie Buysse, Yuval Gottlieb or Olivier Duron.

Ethics declarations

Conflict of Interest

The authors declare no competing interests.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (PDF 1470 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Buysse, M., Binetruy, F., Leibson, R. et al. Ecological Contacts and Host Specificity Promote Replacement of Nutritional Endosymbionts in Ticks. Microb Ecol 83, 776–788 (2022). https://doi.org/10.1007/s00248-021-01773-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00248-021-01773-0

Keywords

Navigation