Reich PB (2014) The world-wide “fast-slow” plant economics spectrum: a traits manifesto. J Ecol 102:275–301. https://doi.org/10.1111/1365-2745.12211
Article
Google Scholar
Salguero-Gómez R, Violle C, Gimenez O, Childs D (2018) Delivering the promises of trait-based approaches to the needs of demographic approaches, and vice versa. Funct Ecol 32:1424–1435. https://doi.org/10.1111/1365-2435.13148
Article
PubMed
PubMed Central
Google Scholar
Lajoie G, Kembel SW (2019) Making the most of trait-based approaches for microbial ecology. Trends Microbiol 27:814–823. https://doi.org/10.1016/j.tim.2019.06.003
CAS
Article
PubMed
Google Scholar
Elser JJ, Sterner RW, Gorokhova E, Fagan WF, Markow TA, Cotner JB, Harrison JF, Hobbie SE, Odell GM, Weider LW (2000) Biological stoichiometry from genes to ecosystems. Ecol Lett 3:540–550. https://doi.org/10.1046/j.1461-0248.2000.00185.x
Article
Google Scholar
Buchkowski RW, Schmitz OJ, Bradford MA (2015) Microbial stoichiometry overrides biomass as a regulator of soil carbon and nitrogen cycling. Ecology 96:1139–1149. https://doi.org/10.1890/14-1327.1
Article
PubMed
Google Scholar
Finlay RD, Frostegård Å, Sonnerfeldt AM (1992) Utilization of organic and inorganic nitrogen sources by ectomycorrhizal fungi in pure culture and in symbiosis with Pinus contorta Dougl. ex Loud. New Phytol 120:105–115. https://doi.org/10.1111/j.1469-8137.1992.tb01063.x
Article
Google Scholar
Floudas D, Binder M, Riley R et al (2012) The Paleozoic origin of enzymatic lignin decomposition reconstructed from 31 fungal genomes. Science (80- ) 336:1715–1719. https://doi.org/10.1126/science.1221748
CAS
Article
Google Scholar
Lustenhouwer N, Maynard DS, Bradford MA, Lindner DL, Oberle B, Zanne AE, Crowther TW (2020) A trait-based understanding of wood decomposition by fungi. Proc Natl Acad Sci U S A 117:1–8. https://doi.org/10.1073/pnas.1909166117
CAS
Article
Google Scholar
Nguyen NH, Song Z, Bates ST, Branco S, Tedersoo L, Menke J, Schilling JS, Kennedy PG (2016) FUNGuild: an open annotation tool for parsing fungal community datasets by ecological guild. Fungal Ecol 20:241–248. https://doi.org/10.1016/j.funeco.2015.06.006
Article
Google Scholar
Větrovský T, Kohout P, Kopecký M, Machac A, Man M, Bahnmann BD, Brabcová V, Choi J, Meszárošová L, Human ZR, Lepinay C, Lladó S, López-Mondéjar R, Martinović T, Mašínová T, Morais D, Navrátilová D, Odriozola I, Štursová M, Švec K, Tláskal V, Urbanová M, Wan J, Žifčáková L, Howe A, Ladau J, Peay KG, Storch D, Wild J, Baldrian P (2019) A meta-analysis of global fungal distribution reveals climate-driven patterns. Nat Commun 10:1–9. https://doi.org/10.1038/s41467-019-13164-8
CAS
Article
Google Scholar
Daws SC, Cline LA, Rotenberry J, Sadowsky MJ, Staley C, Dalzell B, Kennedy PG (2020) Do shared traits create the same fates? Examining the link between morphological type and the biogeography of fungal and bacterial communities. Fungal Ecol 46:100948. https://doi.org/10.1016/j.funeco.2020.100948
Article
Google Scholar
Grigoriev IV, Nikitin R, Haridas S, Kuo A, Ohm R, Otillar R, Riley R, Salamov A, Zhao X, Korzeniewski F, Smirnova T, Nordberg H, Dubchak I, Shabalov I (2014) MycoCosm portal: gearing up for 1000 fungal genomes. Nucleic Acids Res 42:699–704. https://doi.org/10.1093/nar/gkt1183
CAS
Article
Google Scholar
Treseder KK, Lennon JT (2015) Fungal traits that drive ecosystem dynamics on land. Microbiol Mol Biol Rev 79:243–262. https://doi.org/10.1128/mmbr.00001-15
CAS
Article
PubMed
PubMed Central
Google Scholar
Zanne AE, Abarenkov K, Afkhami M et al (2020) Fungal functional ecology: bringing a trait-based approach to plant-associated fungi. Biol Rev 95:11551–11558
Article
Google Scholar
Nagy LG, Tóth R, Kiss E et al (2017) Six key traits of fungi: their evolutionary origins and genetic bases. Fungal Kingdom:35–56. https://doi.org/10.1128/9781555819583.ch2
Frey SD, Ollinger S, Nadelhoffer K, Bowden R, Brzostek E, Burton A, Caldwell BA, Crow S, Goodale CL, Grandy AS, Finzi A, Kramer MG, Lajtha K, LeMoine J, Martin M, McDowell WH, Minocha R, Sadowsky JJ, Templer PH, Wickings K (2014) Chronic nitrogen additions suppress decomposition and sequester soil carbon in temperate forests. Biogeochemistry 121:305–316. https://doi.org/10.1007/s10533-014-0004-0
CAS
Article
Google Scholar
Knorr M, Frey SD, Curtis PS (2005) Nitrogen additions and litter decomposition: a meta-analysis. Ecology 86:3252–3257. https://doi.org/10.1890/05-0150
Article
Google Scholar
Zak DR, Holmes WE, Burton AJ, Pregitzer KS, Talhelm AF (2008) Simulated atmospheric NO3 − deposition increase soil organic matter by slowing down decomposition. Ecol Appl 18:2016–2027. https://doi.org/10.1890/07-1743.1
Article
PubMed
Google Scholar
van Diepen LTA, Frey SD, Sthultz CM, Morrison EW, Minocha R, Pringle A (2015) Changes in litter quality caused by simulated nitrogen deposition reinforce the N-induced suppression of litter decay. Ecosphere 6:1–16. https://doi.org/10.1890/ES15-00262.1
Article
Google Scholar
van Diepen LTA, Frey SD, Landis EA, Morrison EW, Pringle A (2017) Fungi exposed to chronic nitrogen enrichment are less able to decay leaf litter. Ecology 98:5–11. https://doi.org/10.1002/ecy.1635
Article
PubMed
Google Scholar
Whalen ED, Smith RG, Grandy AS, Frey SD (2018) Manganese limitation as a mechanism for reduced decomposition in soils under atmospheric nitrogen deposition. Soil Biol Biochem 127:252–263. https://doi.org/10.1016/j.soilbio.2018.09.025
CAS
Article
Google Scholar
Zak D, Argiroff WA, Freedman ZB et al (2019) Anthropogenic N deposition, fungal gene expression, and an increasing soil carbon sink in the Northern Hemisphere. Ecology 100:1–8. https://doi.org/10.1002/ecy.2804
Article
Google Scholar
Morrison EW, Frey SD, Sadowsky JJ, van Diepen LTA, Thomas WK, Pringle A (2016) Chronic nitrogen additions fundamentally restructure the soil fungal community in a temperate forest. Fungal Ecol 23:48–57. https://doi.org/10.1016/j.funeco.2016.05.011
Article
Google Scholar
Martin F, Kohler A, Murat C, Veneault-Fourrey C, Hibbett DS (2016) Unearthing the roots of ectomycorrhizal symbioses. Nat Rev Microbiol 14:760–773. https://doi.org/10.1038/nrmicro.2016.149
CAS
Article
PubMed
Google Scholar
Hibbett DS, Gilbert L-B, Donoghue MJ (2000) Evolutionary instability of ectomycorrhizal symbioses in Basidiomycetes. Nature 407:506–508. https://doi.org/10.1038/35035065
CAS
Article
PubMed
Google Scholar
Frey SD (2019) Mycorrhizal fungi as mediators of soil organic matter dynamics. Anu Rev Ecol Evol Syst 50:237–259. https://doi.org/10.1146/annurev-ecolsys-110617-062331
Article
Google Scholar
Nicolás C, Martin-Bertelsen T, Floudas D, Bentzer J, Smits M, Johansson T, Troein C, Persson P, Tunlid A (2019) The soil organic matter decomposition mechanisms in ectomycorrhizal fungi are tuned for liberating soil organic nitrogen. ISME J 13:977–988. https://doi.org/10.1038/s41396-018-0331-6
CAS
Article
PubMed
Google Scholar
Bödeker ITM, Clemmensen KE, de Boer W, Martin F, Olson Å, Lindahl BD (2014) Ectomycorrhizal Cortinarius species participate in enzymatic oxidation of humus in northern forest ecosystems. New Phytol 203:245–256. https://doi.org/10.1111/nph.12791
CAS
Article
PubMed
Google Scholar
Nordberg H, Cantor M, Dusheyko S, Hua S, Poliakov A, Shabalov I, Smirnova T, Grigoriev IV, Dubchak I (2014) The genome portal of the Department of Energy Joint Genome Institute: 2014 updates. Nucleic Acids Res 42:26–31. https://doi.org/10.1093/nar/gkt1069
CAS
Article
Google Scholar
Sayers EW, Barrett T, Benson DA, Bryant SH, Canese K, Chetvernin V, Church DM, DiCuccio M, Edgar R, Federhen S, Feolo M, Geer LY, Helmberg W, Kapustin Y, Landsman D, Lipman DJ, Madden TL, Maglott DR, Miller V, Mizrachi I, Ostell J, Pruitt KD, Schuler GD, Sequeira E, Sherry ST, Shumway M, Sirotkin K, Souvorov A, Starchenko G, Tatusova TA, Wagner L, Yaschenko E, Ye J (2009) Database resources of the National Center for Biotechnology Information. Nucleic Acids Res 37:5–15. https://doi.org/10.1093/nar/gkn741
CAS
Article
Google Scholar
Zhou J, Lemos B, Dopman EB, Hartl DL (2011) Copy-number variation: the balance between gene dosage and expression in Drosophila melanogaster. Genome Biol Evol 3:1014–1024. https://doi.org/10.1093/gbe/evr023
CAS
Article
PubMed
PubMed Central
Google Scholar
Klemm D, Heublein B, Fink HP, Bohn A (2005) Cellulose: fascinating biopolymer and sustainable raw material. Angew Chem Int Ed 44:3358–3393. https://doi.org/10.1002/anie.200460587
CAS
Article
Google Scholar
Allison SD (2017) Building predictive models for diverse microbial communities in soil. In: Microbial biomass: a paradigm shift in terrestrial biogeochemistry, edited by Tate KR, World Scientific Publishing Edurope Ltd., pp 141–166
Krause S, Le Roux X, Niklaus PA et al (2014) Trait-based approaches for understanding microbial biodiversity and ecosystem functioning. Front Microbiol 5:1–10. https://doi.org/10.3389/fmicb.2014.00251
Article
Google Scholar
Treseder KK, Balser TC, Bradford MA, Brodie EL, Dubinsky EA, Eviner VT, Hofmockel KS, Lennon JT, Levine UY, MacGregor BJ, Pett-Ridge J, Waldrop MP (2012) Integrating microbial ecology into ecosystem models: challenges and priorities. Biogeochemistry 109:7–18. https://doi.org/10.1007/s10533-011-9636-5
CAS
Article
Google Scholar
Siletti CE, Zeiner CA, Bhatnagar JM (2017) Distributions of fungal melanin across species and soils. Soil Biol Biochem 113:285–293. https://doi.org/10.1016/j.soilbio.2017.05.030
CAS
Article
Google Scholar
R Core Team (2018) R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. https://www.R-project.org/
Aber JD (1992) Nitrogen cycling and nitrogen saturation in temperate forest ecosystems. Trends Ecol Evol 7:220–224. https://doi.org/10.1016/0169-5347(92)90048-G
CAS
Article
PubMed
Google Scholar
Aber JD, McDowell W, Nadelhoffer K, Magill A, Berntson G, Kamakea M, McNulty S, Currie W, Rustad L, Fernandez I (1998) Forest ecosystems hypotheses revisited. Bioscience 48:921–934. https://doi.org/10.2307/1313296
Article
Google Scholar
Schwede DB, Lear GG (2014) A novel hybrid approach for estimating total deposition in the United States. Atmos Environ 92:207–220. https://doi.org/10.1016/j.atmosenv.2014.04.008
CAS
Article
Google Scholar
Galloway JN, Townsend AR, Erisman J et al (2008) Transformation of the nitrogen cycle: recent trends, questions, and potential solutions. Science (80- ) 320:889–892. https://doi.org/10.1126/science.1136674
CAS
Article
Google Scholar
Morrison EW, Pringle A, van Diepen LTA, Frey SD (2018) Simulated nitrogen deposition favors stress-tolerant fungi with low potential for decomposition. Soil Biol Biochem 125:75–85. https://doi.org/10.1016/j.soilbio.2018.06.027
CAS
Article
Google Scholar
Aber JD, Magill AH (2004) Chronic nitrogen additions at the Harvard Forest (USA): the first 15 years of a nitrogen saturation experiment. For Ecol Manag 196:1–5. https://doi.org/10.1016/j.foreco.2004.03.009
Article
Google Scholar
Baldrian P, Kolaiřík M, Štursová M et al (2012) Active and total microbial communities in forest soil are largely different and highly stratified during decomposition. ISME J 6:248–258. https://doi.org/10.1038/ismej.2011.95
CAS
Article
PubMed
Google Scholar
Tedersoo L, Bahram M, Polme S et al (2014) Disentangling global soil fungal diversity. Science (80- ) 346:1052–1053. https://doi.org/10.1126/science.aaa1185
Article
Google Scholar
Crespo JL, Daicho K, Ushimaru T, Hall MN (2001) The GATA transcription factors GLN3 and GAT1 link TOR to salt stress in Saccharomyces cerevisiae. J Biol Chem 276:34441–34444. https://doi.org/10.1074/jbc.M103601200
CAS
Article
PubMed
Google Scholar
Siverio JM (2002) Assimilation of nitrate by yeasts. FEMS Microbiol Rev 26:277–284. https://doi.org/10.1016/S0168-6445(02)00100-6
CAS
Article
PubMed
Google Scholar
Civiero E, Pintus M, Ruggeri C, Tamburini E, Sollai F, Sanjust E, Zucca P (2018) Physiological and phylogenetic characterization of Rhodotorula diobovata DSBCA06, a nitrophilous yeast. Biology (Basel) 7. https://doi.org/10.3390/biology7030039
Godard P, Urrestarazu A, Vissers S et al (2007) Effect of 21 different nitrogen sources on global gene expression in the yeast Saccharomyces cerevisiae. Mol Cell Biol 27:3065–3086. https://doi.org/10.1128/mcb.01084-06
CAS
Article
PubMed
PubMed Central
Google Scholar
Ruiz-Dueñas FJ, Lundell T, Floudas D, Nagy LG, Barrasa JM, Hibbett DS, Martínez AT (2013) Lignin-degrading peroxidases in Polyporales: an evolutionary survey based on 10 sequenced genomes. Mycologia 105:1428–1444. https://doi.org/10.3852/13-059
CAS
Article
PubMed
Google Scholar
Leonowicz A, Matuszewska A, Luterek J et al (1999) Biodegradation of lignin by white rot fungi. Fungal Genet Biol 27:175–185. https://doi.org/10.1006/fgbi.1999.1150
CAS
Article
PubMed
Google Scholar
Zakharova L, Meyer K, Seifan M (2019) Trait-based modelling in ecology: a review of two decades of research. Ecol Model 407:108703
Article
Google Scholar
Maynard DS, Bradford MA, Covey KR, Lindner D, Glaeser J, Talbert DA, Tinker PJ, Walker DM, Crowther TW (2019) Consistent trade-offs in fungal trait expression across broad spatial scales. Nat Microbiol 4:846–853. https://doi.org/10.1038/s41564-019-0361-5
CAS
Article
PubMed
Google Scholar
Defrenne C, Abs E, Longhi Cordeiro A, et al. (In review) The ecology underground coalition: building a collaborative future of belowground ecology and ecologists
Escalas A, Hale L, Voordeckers JW, Yang Y, Firestone MK, Alvarez-Cohen L, Zhou J (2019) Microbial functional diversity: from concepts to applications. Ecol Evol 9:12000–12016. https://doi.org/10.1002/ece3.5670
Article
PubMed
PubMed Central
Google Scholar
Grime J (1998) Benefits of plant diversity to ecosystems: immediate, filter and founder effects. J Ecol 86:902–910
Article
Google Scholar
Violle C, Thuiller W, Mouquet N, Munoz F, Kraft NJB, Cadotte MW, Livingstone SW, Mouillot D (2017) Functional rarity: the ecology of outliers. Trends Ecol Evol 32:356–367. https://doi.org/10.1016/j.tree.2017.02.002
Article
PubMed
PubMed Central
Google Scholar
Evans CT, Ratledge C (1984) Effect of nitrogen source on lipid accumulation in oleaginous yeasts. J Gen Microbiol 130:1693–1704. https://doi.org/10.1099/00221287-130-7-1693
CAS
Article
Google Scholar
Brabender M, Hussain MS, Rodriguez G, Blenner MA (2018) Urea and urine are a viable and cost-effective nitrogen source for Yarrowia lipolytica biomass and lipid accumulation. Appl Microbiol Biotechnol 102:2313–2322. https://doi.org/10.1007/s00253-018-8769-z
CAS
Article
PubMed
Google Scholar
Sharpton TJ, Stajich JE, Rounsley SD, Gardner MJ, Wortman JR, Jordar VS, Maiti R, Kodira CD, Neafsey DE, Zeng Q, Hung CY, McMahan C, Muszewska A, Grynberg M, Mandel MA, Kellner EM, Barker BM, Galgiani JN, Orbach MJ, Kirkland TN, Cole GT, Henn MR, Birren BW, Taylor JW (2009) Comparative genomic analyses of the human fungal pathogens Coccidioides and their relatives. Genome Res 19:1722–1731. https://doi.org/10.1101/gr.087551.108
CAS
Article
PubMed
PubMed Central
Google Scholar
Biswas S, Roy M, Datta A (2003) N-acetylglucosamine-inducible CaGAP1 encodes a general amino acid permease which co-ordinates external nitrogen source response and morphogenesis in Candida albicans. Microbiology 149:2597–2608. https://doi.org/10.1099/mic.0.26215-0
CAS
Article
PubMed
Google Scholar
Ibstedt S, Stenberg S, Bagés S, Gjuvsland AB, Salinas F, Kourtchenko O, Samy JKA, Blomberg A, Omholt SW, Liti G, Beltran G, Warringer J (2015) Concerted evolution of life stage performances signals recent selection on yeast nitrogen use. Mol Biol Evol 32:153–161. https://doi.org/10.1093/molbev/msu285
CAS
Article
PubMed
Google Scholar
Naranjo-Ortiz MA, Gabaldón T (2019) Fungal evolution: major ecological adaptations and evolutionary transitions. Biol Rev 94:1443–1476. https://doi.org/10.1111/brv.12510
Article
PubMed
Google Scholar
Mlambo MC (2014) Not all traits are “functional”: insights from taxonomy and biodiversity-ecosystem functioning research. Biodivers Conserv 23:781–790. https://doi.org/10.1007/s10531-014-0618-5
Article
Google Scholar
Talbot JM, Martin F, Kohler A, Henrissat B, Peay KG (2015) Functional guild classification predicts the enzymatic role of fungi in litter and soil biogeochemistry. Soil Biol Biochem 88:441–456. https://doi.org/10.1016/j.soilbio.2015.05.006
CAS
Article
Google Scholar
Krah F-S, Bässler C, Heibl C, Soghigian J, Schaefer H, Hibbett DS (2018) Evolutionary dynamics of host specialization in wood-decay fungi. BMC Evol Biol 18:1–13. https://doi.org/10.1186/s12862-018-1229-7
CAS
Article
Google Scholar
Miyauchi S, Kiss E, Kuo A, Drula E, Kohler A, Sánchez-García M, Morin E, Andreopoulos B, Barry KW, Bonito G, Buée M, Carver A, Chen C, Cichocki N, Clum A, Culley D, Crous PW, Fauchery L, Girlanda M, Hayes RD, Kéri Z, LaButti K, Lipzen A, Lombard V, Magnuson J, Maillard F, Murat C, Nolan M, Ohm RA, Pangilinan J, Pereira MF, Perotto S, Peter M, Pfister S, Riley R, Sitrit Y, Stielow JB, Szöllősi G, Žifčáková L, Štursová M, Spatafora JW, Tedersoo L, Vaario LM, Yamada A, Yan M, Wang P, Xu J, Bruns T, Baldrian P, Vilgalys R, Dunand C, Henrissat B, Grigoriev IV, Hibbett D, Nagy LG, Martin FM (2020) Large-scale genome sequencing of mycorrhizal fungi provides insights into the early evolution of symbiotic traits. Nat Commun 11:1–17. https://doi.org/10.1038/s41467-020-18795-w
CAS
Article
Google Scholar
Lindahl BD, Tunlid A (2015) Ectomycorrhizal fungi - potential organic matter decomposers, yet not saprotrophs. New Phytol 205:1443–1447. https://doi.org/10.1111/nph.13201
CAS
Article
PubMed
Google Scholar
Martinez D, Challacombe J, Morgenstern I, Hibbett D, Schmoll M, Kubicek CP, Ferreira P, Ruiz-Duenas FJ, Martinez AT, Kersten P, Hammel KE, vanden Wymelenberg A, Gaskell J, Lindquist E, Sabat G, Splinter BonDurant S, Larrondo LF, Canessa P, Vicuna R, Yadav J, Doddapaneni H, Subramanian V, Pisabarro AG, Lavín JL, Oguiza JA, Master E, Henrissat B, Coutinho PM, Harris P, Magnuson JK, Baker SE, Bruno K, Kenealy W, Hoegger PJ, Kües U, Ramaiya P, Lucas S, Salamov A, Shapiro H, Tu H, Chee CL, Misra M, Xie G, Teter S, Yaver D, James T, Mokrejs M, Pospisek M, Grigoriev IV, Brettin T, Rokhsar D, Berka R, Cullen D (2009) Genome, transcriptome, and secretome analysis of wood decay fungus Postia placenta supports unique mechanisms of lignocellulose conversion. Proc Natl Acad Sci U S A 106:1954–1959. https://doi.org/10.1073/pnas.0809575106
Article
PubMed
PubMed Central
Google Scholar
Rineau F, Roth D, Shah F, Smits M, Johansson T, Canbäck B, Olsen PB, Persson P, Grell MN, Lindquist E, Grigoriev IV, Lange L, Tunlid A (2012) The ectomycorrhizal fungus Paxillus involutus converts organic matter in plant litter using a trimmed brown-rot mechanism involving Fenton chemistry. Environ Microbiol 14:1477–1487. https://doi.org/10.1111/j.1462-2920.2012.02736.x
CAS
Article
PubMed
PubMed Central
Google Scholar
Crowther TW, Maynard DS, Crowther TR, Peccia J, Smith JR, Bradford MA (2014) Untangling the fungal niche: the trait-based approach. Front Microbiol 5:1–12. https://doi.org/10.3389/fmicb.2014.00579
Article
Google Scholar
Malik AA, Martiny JBH, Brodie EL, Martiny AC, Treseder KK, Allison SD (2020) Defining trait-based microbial strategies with consequences for soil carbon cycling under climate change. ISME J 14:14–19. https://doi.org/10.1038/s41396-019-0510-0
Article
Google Scholar
Allison SD (2014) Modeling adaptation of carbon use efficiency in microbial communities. Front Microbiol 5:1–9. https://doi.org/10.3389/fmicb.2014.00571
Article
Google Scholar
Allison SD (2012) A trait-based approach for modelling microbial litter decomposition. Ecol Lett 15:1058–1070. https://doi.org/10.1111/j.1461-0248.2012.01807.x
CAS
Article
PubMed
Google Scholar