Crotti E, Damiani C, Pajoro M, Gonella E, Rizzi A, Ricci I, Negri I, Scuppa P, Rossi P, Ballarini P (2009) Asaia, a versatile acetic acid bacterial symbiont, capable of cross colonizing insects of phylogenetically distant genera and orders. Environ Microbiol 11:3252–3264
CAS
PubMed
Google Scholar
Jupatanakul N, Sim S, Dimopoulos G (2014) The insect microbiome modulates vector competence for arboviruses. Viruses 6:4294–4313
CAS
PubMed
PubMed Central
Google Scholar
Gündüz EA, Douglas A (2009) Symbiotic bacteria enable insect to use a nutritionally inadequate diet. Proc R Soc Lond B Biol Sci 276:987–991
Google Scholar
Brune A (2014) Symbiotic digestion of lignocellulose in termite guts. Nat Rev Microbiol 12:168
CAS
PubMed
Google Scholar
Correa MA, Matusovsky B, Brackney DE, Steven B (2018) Generation of axenic Aedes aegypti demonstrate live bacteria are not required for mosquito development. Nat Commun 9:4464. https://doi.org/10.1038/s41467-018-07014-2
CAS
Article
PubMed
PubMed Central
Google Scholar
Valzania L, Martinson VG, Harrison RE, Boyd BM, Coon KL, Brown MR, Strand MR (2018) Both living bacteria and eukaryotes in the mosquito gut promote growth of larvae. PLoS Negl Trop Dis 12:e0006638
PubMed
PubMed Central
Google Scholar
Hegde S, Rasgon JL, Hughes GL (2015) The microbiome modulates arbovirus transmission in mosquitoes. Curr Opin Virol 15:97–102
CAS
PubMed
PubMed Central
Google Scholar
Cirimotich CM, Ramirez JL, Dimopoulos G (2011) Native microbiota shape insect vector competence for human pathogens. Cell Host Microbe 10:307–310
CAS
PubMed
PubMed Central
Google Scholar
Azambuja P, Feder D, Garcia E (2004) Isolation of Serratia marcescens in the midgut of Rhodnius prolixus: impact on the establishment of the parasite Trypanosoma cruzi in the vector. Exp Parasitol 107:89–96
CAS
PubMed
Google Scholar
Azambuja P, Garcia ES, Ratcliffe NA (2005) Gut microbiota and parasite transmission by insect vectors. Trends Parasitol 21:568–572
PubMed
Google Scholar
Bourtzis K, Dobson SL, Xi Z, Rasgon JL, Calvitti M, Moreira LA, Bossin HC, Moretti R, Baton LA, Hughes GL (2014) Harnessing mosquito–Wolbachia symbiosis for vector and disease control. Acta Trop 132:S150–S163
PubMed
Google Scholar
Apte-Deshpande A, Paingankar M, Gokhale MD, Deobagkar DN (2012) Serratia odorifera a midgut inhabitant of Aedes aegypti mosquito enhances its susceptibility to dengue-2 virus. PLoS One 7:e40401
CAS
PubMed
PubMed Central
Google Scholar
Apte-Deshpande AD, Paingankar MS, Gokhale MD, Deobagkar DN (2014) Serratia odorifera mediated enhancement in susceptibility of Aedes aegypti for chikungunya virus. Indian J Med Res 139:762
PubMed
PubMed Central
Google Scholar
Ramirez JL, Short SM, Bahia AC, Saraiva RG, Dong Y, Kang S, Tripathi A, Mlambo G, Dimopoulos G (2014) Chromobacterium Csp_P reduces malaria and dengue infection in vector mosquitoes and has entomopathogenic and in vitro anti-pathogen activities. PLoS Pathog 10:e1004398
PubMed
PubMed Central
Google Scholar
Favia G, Ricci I, Damiani C, Raddadi N, Crotti E, Marzorati M, Rizzi A, Urso R, Brusetti L, Borin S (2007) Bacteria of the genus Asaia stably associate with Anopheles stephensi, an Asian malarial mosquito vector. PNAS 104:9047–9051
CAS
PubMed
Google Scholar
Bisi DC, Lampe DJ (2011) Secretion of anti-Plasmodium effector proteins from a natural Pantoea agglomerans isolate by using PelB and HlyA secretion signals. Appl Environ Microbiol 77:4669–4675
CAS
PubMed
PubMed Central
Google Scholar
Wang S, Dos-Santos AL, Huang W, Liu KC, Oshaghi MA, Wei G, Agre P, Jacobs-Lorena M (2017) Driving mosquito refractoriness to Plasmodium falciparum with engineered symbiotic bacteria. Science 357:1399–1402
CAS
PubMed
Google Scholar
Durvasula RV, Gumbs A, Panackal A, Kruglov O, Aksoy S, Merrifield RB, Richards FF, Beard CB (1997) Prevention of insect-borne disease: an approach using transgenic symbiotic bacteria. PNAS 94:3274–3278
CAS
PubMed
Google Scholar
Guégan M, Zouache K, Démichel C, Minard G, Potier P, Mavingui P, Moro CV (2018) The mosquito holobiont: fresh insight into mosquito-microbiota interactions. Microbiome 6:49
PubMed
PubMed Central
Google Scholar
Stathopoulos S, Neafsey DE, Lawniczak MK, Muskavitch MA, Christophides GK (2014) Genetic dissection of Anopheles gambiae gut epithelial responses to Serratia marcescens. PLoS Pathog 10:e1003897
PubMed
PubMed Central
Google Scholar
Iturbe Ormaetxe I, Walker T, LO’Neill S (2011) Wolbachia and the biological control of mosquito borne disease. EMBO Rep 12: 508-518.
Amuzu HE, Tsyganov K, Koh C, Herbert RI, Powell DR, McGraw EA (2018) Wolbachia enhances insect specific flavivirus infection in Aedes aegypti mosquitoes. Ecol Evol 8:5441–5454
PubMed
PubMed Central
Google Scholar
Audsley MD, Yixin HY, McGraw EA (2017) The microbiome composition of Aedes aegypti is not critical for Wolbachia-mediated inhibition of dengue virus. PLoS Negl Trop Dis 11:e0005426
PubMed
PubMed Central
Google Scholar
Moreira LA, Iturbe-Ormaetxe I, Jeffery JA, Lu G, Pyke AT, Hedges LM, Rocha BC, Hall-Mendelin S, Day A, Riegler M (2009) A Wolbachia symbiont in Aedes aegypti limits infection with dengue, chikungunya, and Plasmodium. Cell 139:1268–1278
PubMed
Google Scholar
Dodson BL, Hughes GL, Paul O, Matacchiero AC, Kramer LD, Rasgon JL (2014) Wolbachia enhances West Nile virus (WNV) infection in the mosquito Culex tarsalis. PLoS Negl Trop Dis 8:e2965
PubMed
PubMed Central
Google Scholar
Dong Y, Manfredini F, Dimopoulos G (2009) Implication of the mosquito midgut microbiota in the defense against malaria parasites. PLoS Pathog 5:e1000423
PubMed
PubMed Central
Google Scholar
Cirimotich CM, Dong Y, Clayton AM, Sandiford SL, Souza-Neto JA, Mulenga M, Dimopoulos G (2011) Natural microbe-mediated refractoriness to Plasmodium infection in Anopheles gambiae. Science 332:855–858
CAS
PubMed
PubMed Central
Google Scholar
Dennison NJ, Saraiva RG, Cirimotich CM, Mlambo G, Mongodin EF, Dimopoulos G (2016) Functional genomic analyses of Enterobacter, Anopheles and Plasmodium reciprocal interactions that impact vector competence. Malar J 15:425
PubMed
PubMed Central
Google Scholar
Bahia AC, Dong Y, Blumberg BJ, Mlambo G, Tripathi A, BenMarzouk Hidalgo OJ, Chandra R, Dimopoulos G (2014) Exploring Anopheles gut bacteria for Plasmodium blocking activity. Environ Microbiol 16:2980–2994
CAS
PubMed
PubMed Central
Google Scholar
Xi Z, Ramirez JL, Dimopoulos G (2008) The Aedes aegypti toll pathway controls dengue virus infection. PLoS Pathog 4:e1000098
PubMed
PubMed Central
Google Scholar
Barletta ABF, Nascimento-Silva MCL, Talyuli OA, Oliveira JHM, Pereira LOR, Oliveira PL, Sorgine MHF (2017) Microbiota activates IMD pathway and limits Sindbis infection in Aedes aegypti. Parasit Vectors 10:103
PubMed
PubMed Central
Google Scholar
Ramirez JL, Souza-Neto J, Cosme RT, Rovira J, Ortiz A, Pascale JM, Dimopoulos G (2012) Reciprocal tripartite interactions between the Aedes aegypti midgut microbiota, innate immune system and dengue virus influences vector competence. PLoS Negl Trop Dis 6:e1561
PubMed
PubMed Central
Google Scholar
Boorman J (1974) The maintenance of laboratory colonies of Culicoides variipennis (Coq.), C. nubeculosus (Mg.) and C. riethi Kieff. (Diptera, Ceratopogonidae). Bull Entomol Res 64:371–377
Google Scholar
Möhlmann TWR, Oymans J, Wichgers Schreur PJ, Koenraadt CJM, Kortekaas J, Vogels CBF (2018) Vector competence of biting midges and mosquitoes for Shuni virus. PLoS Negl Trop Dis 12:e0006993. https://doi.org/10.1371/journal.pntd.0006993
CAS
Article
PubMed
PubMed Central
Google Scholar
Göertz GP, Vogels CBF, Geertsema C, Koenraadt CJM, Pijlman GP (2017) Mosquito co-infection with Zika and chikungunya virus allows simultaneous transmission without affecting vector competence of Aedes aegypti. PLoS Negl Trop Dis 11:e0005654
PubMed
PubMed Central
Google Scholar
Touré AM, Mackey AJ, Wang ZX, Beier JC (2000) Bactericidal effects of sugar-fed antibiotics on resident midgut bacteria of newly emerged anopheline mosquitoes (Diptera: Culicidae). J Med Entomol 37:246–249
PubMed
Google Scholar
Nayduch D, Erram D, Lee M, Zurek L, Saski C (2015) Impact of the blood meal on humoral immunity and microbiota in the gut of female Culicoides sonorensis. Vet Ital 51:385–392
PubMed
Google Scholar
Osei Poku J, Mbogo C, Palmer W, Jiggins F (2012) Deep sequencing reveals extensive variation in the gut microbiota of wild mosquitoes from Kenya. Mol Ecol 21:5138–5150
CAS
PubMed
Google Scholar
Gusmão DS, Santos AV, Marini DC, Russo ÉS, Peixoto AMD, Bacci Júnior M, Berbert-Molina MA, Lemos FJA (2007) First isolation of microorganisms from the gut diverticulum of Aedes aegypti (Diptera: Culicidae): new perspectives for an insect-bacteria association. Mem Inst Oswaldo Cruz 102:919–924
PubMed
Google Scholar
Fierer N, Jackson JA, Vilgalys R, Jackson RB (2005) Assessment of soil microbial community structure by use of taxon-specific quantitative PCR assays. Appl Environ Microbiol 71:4117–4120
CAS
PubMed
PubMed Central
Google Scholar
Caporaso JG, Lauber CL, Walters WA, Berg-Lyons D, Lozupone CA, Turnbaugh PJ, Fierer N, Knight R (2011) Global patterns of 16S rRNA diversity at a depth of millions of sequences per sample. PNAS 108:4516–4522
CAS
PubMed
Google Scholar
Caporaso JG, Kuczynski J, Stombaugh J, Bittinger K, Bushman FD, Costello EK, Fierer N, Pena AG, Goodrich JK, Gordon JI (2010) QIIME allows analysis of high-throughput community sequencing data. Nat Methods 7:335
CAS
PubMed
PubMed Central
Google Scholar
Bolyen E, Rideout JR, Dillon MR, Bokulich NA, Abnet C, Al-Ghalith GA, Alexander H, Alm EJ, Arumugam M, Asnicar F (2018) QIIME 2: Reproducible, interactive, scalable, and extensible microbiome data science. PeerJ Preprints.
Google Scholar
Callahan BJ, McMurdie PJ, Rosen MJ, Han AW, Johnson AJA, Holmes SP (2016) DADA2: high-resolution sample inference from Illumina amplicon data. Nat Methods 13:581
CAS
PubMed
PubMed Central
Google Scholar
Callahan BJ, McMurdie PJ, Holmes SP (2017) Exact sequence variants should replace operational taxonomic units in marker-gene data analysis. The ISME Journal 11:2639
PubMed
PubMed Central
Google Scholar
Katoh K, Standley DM (2013) MAFFT multiple sequence alignment software version 7: improvements in performance and usability. Mol Biol Evol 30:772–780
CAS
PubMed
PubMed Central
Google Scholar
Lane D (1991) 16S/23S rRNA sequencing. Nucleic acid techniques in bacterial systematics: 115-175.
Price MN, Dehal PS, Arkin AP (2010) FastTree 2–approximately maximum-likelihood trees for large alignments. PLoS One 5:e9490
PubMed
PubMed Central
Google Scholar
Quast C, Pruesse E, Yilmaz P, Gerken J, Schweer T, Yarza P, Peplies J, Glöckner FO (2012) The SILVA ribosomal RNA gene database project: improved data processing and web-based tools. Nucleic Acids Res 41:D590–D596
PubMed
PubMed Central
Google Scholar
Pedregosa F, Varoquaux G, Gramfort A, Michel V, Thirion B, Grisel O, Blondel M, Prettenhofer P, Weiss R, Dubourg V (2011) Scikit-learn: machine learning in Python. J Mach Learn Res 12:2825–2830
Google Scholar
Bokulich NA, Kaehler BD, Rideout JR, Dillon M, Bolyen E, Knight R, Huttley GA, Caporaso JG (2018) Optimizing taxonomic classification of marker-gene amplicon sequences with QIIME 2’s q2-feature-classifier plugin. Microbiome 6:90
PubMed
PubMed Central
Google Scholar
McDonald D, Clemente JC, Kuczynski J, Rideout JR, Stombaugh J, Wendel D, Wilke A, Huse S, Hufnagle J, Meyer F (2012) The Biological Observation Matrix (BIOM) format or: how I learned to stop worrying and love the ome-ome. GigaScience 1:7
PubMed
PubMed Central
Google Scholar
Lazarevic V, Gaïa N, Girard M, Schrenzel J (2016) Decontamination of 16S rRNA gene amplicon sequence datasets based on bacterial load assessment by qPCR. BMC Microbiol 16:73
PubMed
PubMed Central
Google Scholar
Knights D, Kuczynski J, Charlson ES, Zaneveld J, Mozer MC, Collman RG, Bushman FD, Knight R, Kelley ST (2011) Bayesian community-wide culture-independent microbial source tracking. Nat Methods 8:761
CAS
PubMed
PubMed Central
Google Scholar
Grice EA, Segre JA (2011) The skin microbiome. Nat Rev Microbiol 9:244
CAS
PubMed
PubMed Central
Google Scholar
Reed LJ, Muench H (1938) A simple method of estimating fifty per cent endpoints. Am J Epidemiol 27:493–497
Google Scholar
ter Braak CJF, Šmilauer P (2018) Canoco reference manual and user’s guide: software for ordination (version 5.10). Microcomputer Power, Ithaca, USA
Oksanen J, Kindt R, Legendre P, O’Hara B, Simpson G, Stevens M, Wagner H (2009) Vegan: Community Ecology Package. R package version 2(9):2
Google Scholar
Core Team R (2017) R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria
Google Scholar
Dickson LB, Ghozlane A, Volant S, Bouchier C, Ma L, Vega-Rúa A, Dusfour I, Jiolle D, Paupy C, Mayanja MN (2018) Diverse laboratory colonies of Aedes aegypti harbor the same adult midgut bacterial microbiome. Parasit Vectors 11:207
PubMed
PubMed Central
Google Scholar
Muturi EJ, Ramirez JL, Rooney AP, Kim C-H (2017) Comparative analysis of gut microbiota of mosquito communities in central Illinois. PLoS Negl Trop Dis 11:e0005377
PubMed
PubMed Central
Google Scholar
Gimonneau G, Tchioffo MT, Abate L, Boissière A, Awono-Ambéné PH, Nsango SE, Christen R, Morlais I (2014) Composition of Anopheles coluzzii and Anopheles gambiae microbiota from larval to adult stages. Infect Genet Evol 28:715–724
PubMed
Google Scholar
Díaz Sánchez S, Hernández Jarguín A, Torina A, Fernández de Mera IG, Estrada Peña A, Villar M, La Russa F, Blanda V, Vicente J, Caracappa S (2018) Biotic and abiotic factors shape the microbiota of wild-caught populations of the arbovirus vector Culicoides imicola. Insect Mol Biol
Fu H, Leake C, Mertens P, Mellor P (1999) The barriers to bluetongue virus infection, dissemination and transmission in the vector, Culicoides variipennis (Diptera: Ceratopogonidae). Arch Virol 144:747–761
CAS
PubMed
Google Scholar
Mills MK, Michel K, Pfannenstiel RS, Ruder MG, Veronesi E, Nayduch D (2017) Culicoides–virus interactions: infection barriers and possible factors underlying vector competence. Current Opinion in Insect Science.
Google Scholar
Mellor P, Boorman J, Baylis M (2000) Culicoides biting midges: their role as arbovirus vectors. Annu Rev Entomol 45:307–340
CAS
PubMed
Google Scholar
Wu P, Sun P, Nie K, Zhu Y, Shi M, Xiao C, Liu H, Liu Q, Zhao T, Chen X, Zhou H, Wang P, Cheng G (2019) A gut commensal bacterium promotes mosquito permissiveness to arboviruses. Cell Host & Microbe 25: 101-112. doi: https://doi.org/10.1016/j.chom.2018.11.004
Mancini MV, Spaccapelo R, Damiani C, Accoti A, Tallarita M, Petraglia E, Rossi P, Cappelli A, Capone A, Peruzzi G (2016) Paratransgenesis to control malaria vectors: a semi-field pilot study. Parasit Vectors 9:140
PubMed
PubMed Central
Google Scholar
Turell MJ, Dohm DJ, Sardelis MR, O’guinn ML, Andreadis TG, Blow JA (2005) An update on the potential of North American mosquitoes (Diptera: Culicidae) to transmit West Nile virus. J Med Entomol 42:57–62. https://doi.org/10.1093/jmedent/42.1.57
Article
PubMed
Google Scholar
Turell MJ, Linthicum KJ, Patrican LA, Davies FG, Kairo A, Bailey CL (2008) Vector competence of selected African mosquito (Diptera: Culicidae) species for Rift Valley fever virus. J Med Entomol 45:102–108
PubMed
Google Scholar
Vogels CB, Fros JJ, Göertz GP, Pijlman GP, Koenraadt CJ (2016) Vector competence of northern European Culex pipiens biotypes and hybrids for West Nile virus is differentially affected by temperature. Parasit Vectors:9. https://doi.org/10.1186/s13071-016-1677-0
Paweska J, Venter G, Mellor P (2002) Vector competence of South African Culicoides species for bluetongue virus serotype 1 (BTV 1) with special reference to the effect of temperature on the rate of virus replication in C. imicola and C. bolitinos. Med Vet Entomol 16:10–21
CAS
PubMed
Google Scholar
Balenghien T, Pagès N, Goffredo M, Carpenter S, Augot D, Jacquier E, Talavera S, Monaco F, Depaquit J, Grillet C (2014) The emergence of Schmallenberg virus across Culicoides communities and ecosystems in Europe. Prev Vet Med 116:360–369
PubMed
Google Scholar
Hardy JL, Houk EJ, Kramer LD, Reeves WC (1983) Intrinsic factors affecting vector competence of mosquitoes for arboviruses. Annu Rev Entomol 28:229–262
CAS
PubMed
Google Scholar
Kenney JL, Brault AC (2014) The role of environmental, virological and vector interactions in dictating biological transmission of arthropod-borne viruses by mosquitoes. Adv Virus Res. Elsevier, pp. 39-83
Novakova E, Woodhams DC, Rodríguez-Ruano SM, Brucker RM, Leff JW, Maharaj A, Amir A, Knight R, Scott J (2017) Mosquito microbiome dynamics, a background for prevalence and seasonality of West Nile virus. Front Microbiol 8:526
PubMed
PubMed Central
Google Scholar
Dong Y, Aguilar R, Xi Z, Warr E, Mongin E, Dimopoulos G (2006) Anopheles gambiae immune responses to human and rodent Plasmodium parasite species. PLoS Pathog 2:e52
PubMed
PubMed Central
Google Scholar
Ryu J-H, Kim S-H, Lee H-Y, Bai JY, Nam Y-D, Bae J-W, Lee DG, Shin SC, Ha E-M, Lee W-J (2008) Innate immune homeostasis by the homeobox gene caudal and commensal-gut mutualism in Drosophila. Science 319:777–782
CAS
PubMed
Google Scholar
Joyce JD, Nogueira JR, Bales AA, Pittman KE, Anderson JR (2011) Interactions between La Crosse virus and bacteria isolated from the digestive tract of Aedes albopictus (Diptera: Culicidae). J Med Entomol 48:389–394
PubMed
Google Scholar
Kumar S, Molina-Cruz A, Gupta L, Rodrigues J, Barillas-Mury C (2010) A peroxidase/dual oxidase system modulates midgut epithelial immunity in Anopheles gambiae. Science 327:1644–1648
CAS
PubMed
PubMed Central
Google Scholar
Rodgers FH, Gendrin M, Wyer CA, Christophides GK (2017) Microbiota-induced peritrophic matrix regulates midgut homeostasis and prevents systemic infection of malaria vector mosquitoes. PLoS Pathog 13:e1006391
PubMed
PubMed Central
Google Scholar
Abraham NM, Liu L, Jutras BL, Yadav AK, Narasimhan S, Gopalakrishnan V, Ansari JM, Jefferson KK, Cava F, Jacobs-Wagner C (2017) Pathogen-mediated manipulation of arthropod microbiota to promote infection. PNAS 114:E781–E790
CAS
PubMed
Google Scholar
Cabezas-Cruz A, Alberdi P, Ayllón N, Valdés JJ, Pierce R, Villar M, de la Fuente J (2016) Anaplasma phagocytophilum increases the levels of histone modifying enzymes to inhibit cell apoptosis and facilitate pathogen infection in the tick vector Ixodes scapularis. Epigenetics 11:303–319
PubMed
PubMed Central
Google Scholar
Renault D, Yousef H, Mohamed AA (2018) The multilevel antibiotic-induced perturbations to biological systems: early-life exposure induces long-lasting damages to muscle structure and mitochondrial metabolism in flies. Environ Pollut 241:821–833
CAS
PubMed
Google Scholar
Houk E, Obie F, Hardy J (1979) Peritrophic membrane formation and the midgut barrier to arboviral infection in the mosquito, Culex tarsalis Coquillett (Insecta, Diptera). Acta Trop 36:39–45
CAS
PubMed
Google Scholar
Weaver SC, Scott TW, Lorenz LH, Repik PM (1991) Detection of eastern equine encephalomyelitis virus deposition in Culiseta melanura following ingestion of radiolabeled virus in blood meals. Am J Trop Med Hyg 44:250–259
CAS
PubMed
Google Scholar
Speksnijder D, Mevius D, Bruschke C, Wagenaar J (2015) Reduction of veterinary antimicrobial use in the Netherlands. The Dutch success model. Zoonoses Public Health 62:79–87
PubMed
Google Scholar
Cogliani C, Goossens H, Greko C (2011) Restricting antimicrobial use in food animals: lessons from Europe. Microbe 6:274
Google Scholar
Klein EY, Van Boeckel TP, Martinez EM, Pant S, Gandra S, Levin SA, Goossens H, Laxminarayan R (2018) Global increase and geographic convergence in antibiotic consumption between 2000 and 2015. PNAS 201717295
Sarmah AK, Meyer MT, Boxall AB (2006) A global perspective on the use, sales, exposure pathways, occurrence, fate and effects of veterinary antibiotics (VAs) in the environment. Chemosphere 65:725–759
CAS
PubMed
Google Scholar
Andersson DI, Hughes D (2014) Microbiological effects of sublethal levels of antibiotics. Nat Rev Microbiol 12:465
CAS
PubMed
Google Scholar
Martínez-Carballo E, González-Barreiro C, Scharf S, Gans O (2007) Environmental monitoring study of selected veterinary antibiotics in animal manure and soils in Austria. Environ Pollut 148:570–579
PubMed
Google Scholar
Christian T, Schneider RJ, Färber HA, Skutlarek D, Meyer MT, Goldbach HE (2003) Determination of antibiotic residues in manure, soil, and surface waters. Acta Hydrochim Hydrobiol 31:36–44
CAS
Google Scholar