Skip to main content

Advertisement

Log in

Alkaline phosphatase activities and regulation in three harmful Prorocentrum species from the coastal waters of the East China Sea

  • Enzymology
  • Published:
Microbial Ecology Aims and scope Submit manuscript

Abstract

Harmful blooms of Prorocentrum donghaiense occur annually in the phosphorus-scarce coastal waters of the East China Sea (ECS). The enzymatic activities of alkaline phosphatase (AP) and its regulation by external phosphorus were studied during a P. donghaiense bloom in this area. The AP characteristics of P. donghaiense was further compared with Prorocentrum minimum and Prorocentrum micans in monocultures with both bulk and single-cell enzyme-labeled fluorescence AP assays. Concentrations of dissolved inorganic phosphorus (DIP) varied between 0.04 and 0.73 μmol l−1, with more than half recording stations registering concentrations below 0.10 μmol l−1. Concentrations of dissolved organic phosphorus (DOP) were comparable or even higher than those of DIP. P. donghaiense suffered phosphorus stress and expressed abundant AP, especially when DIP was lower than 0.10 μmol l−1. The AP activities showed a negative correlation with DIP but a positive correlation with DOP. The AP activities were also regulated by internal phosphorus pool. The sharp increase in AP activities was observed until cellular phosphorus was exhausted. Most AP of P. donghaiense was located on the cell surface and some were released into the water with time. Compared with P. minimum and P. micans, P. donghaiense showed a higher AP affinity for organic phosphorus substrates, a more efficient and energy-saving AP expression quantity as a response to phosphorus deficiency. The unique AP characteristic of P. donghaiense suggests that it benefits from the efficient utilization of DOP, and outcompete other species in the phosphorus-scarce ECS.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Lu DD, Qi YZ, Gu HF, Dai XF, Wang HX, Gao YH, Shen PP, Zhang QC, Yu RC, Lu SH (2014) Causative species of harmful algal blooms in Chinese coastal waters. Algol Stud 145:145–168

    Google Scholar 

  2. Zhou ZX, Yu RC, Zhou MJ (2017) Seasonal succession of microbial blooms from diatoms to dinoflagellates in the East China Sea: A numerical simulation study. Ecol Model 360:150–162

    Google Scholar 

  3. Lu DD, Goebel J (2001) Five red tide species in genus Prorocentrum including the description of Prorocentrum donghaiense Lu sp. nov. from the East China Sea. Chin J Oceanol Limnol 19:337–344

    Google Scholar 

  4. Zhou MJ, Zhu MY (2006) Progress of the project “Ecology and Oceanography of harmful algal blooms in China”. Adv Earth Science 21:673–679

    Google Scholar 

  5. Chen GF, Ma CS, Zhang CY, Zhou J, Wang YY, Wang GC, Zhang BY, Xu Z, Lu DD (2013) A rapid and sensitive method for field detection of Prorocentrum donghaiense using reverse transcription-coupled loop-mediated isothermal amplification. Harmful Algae 29:31–39

    CAS  Google Scholar 

  6. Liu LS, Zhou J, Zheng BH, Cai WQ, Lin KX, Tang JL (2013) Temporal and spatial distribution of red tide outbreaks in the Yangtze River Estuary and adjacent waters, China. Mar Pollut Bull 72:213–221

    CAS  PubMed  Google Scholar 

  7. Tang DL, Di BP, Wei GF, Ni IH, Oh IS, Wang SF (2006) Spatial, seasonal and species variations of harmful algal blooms in the South Yellow Sea and East China Sea. Hydrobiologia 568:245–253

    Google Scholar 

  8. Wang JT, Zhang YW, Li H, Cao J (2013) Competitive interaction between diatom Skeletonema costatum and dinoflagellate Prorocentrum donghaiense in laboratory culture. J Plankton Res 35:367–378

    CAS  Google Scholar 

  9. Shi XG, Lin X, Li L, Li MZ, Palenik B, Lin SJ (2017) Transcriptomic and microRNAomic profiling reveals multi-faceted mechanisms to cope with phosphate stress in a dinoflagellate. ISME J 11:2209–2218

    CAS  PubMed  PubMed Central  Google Scholar 

  10. Zhou YP, Zhang YM, Li FF, Tan LJ, Wang JT (2017) Nutrients structure changes impact the competition and succession between diatom and dinoflagellate in the East China Sea. Sci Total Environ 574:499–508

    CAS  PubMed  Google Scholar 

  11. Glibert PM, Burkholder JM, Kana T (2012) Recent insights about relationships between nutrient availability, forms, and stoichiometry, and the distribution, ecophysiology, and food web effects of pelagic and benthic Prorocentrum species. Harmful Algae 14:231–259

    Google Scholar 

  12. Li Y, Lu SH, Jiang TJ, Xiao YP, You SP (2011) Environmental factors and seasonal dynamics of Prorocentrum populations in Nanji Islands National Nature Reserve, East China Sea. Harmful Algae 10:426–432

    Google Scholar 

  13. Huang BQ, Ou LJ, Wang XL, Huo WY, Li RX, Hong HS, Zhu MY, Qi YZ (2007) Alkaline phosphatase activity of phytoplankton in East China Sea coastal waters with frequent HAB occurrences. Aquat Microb Ecol 49:195–206

    Google Scholar 

  14. Van Mooy BAS, Fredricks HF, Pedler BE, Dyhrman ST, Karl DM, Koblížek M, Lomas MW, Mincer TJ, Moore LR, Moutin T, Rappé MS, Webb EA (2009) Phytoplankton in the ocean use non-phosphorus lipids in response to phosphorus scarcity. Nature 458:69–72

    PubMed  Google Scholar 

  15. Dyhrman ST, Jenkins BD, Rynearson TA, Saito MA, Mercier ML, Alexander H, Whitney LP, Drzewianowski A, Bulygin VV, Bertrand EM, Wu ZJ, Benitez-Nelson C, Heithoff A (2012) The transcriptome and proteome of the diatom Thalassiosira pseudonana reveal a diverse phosphorus stress response. PLoS One 7:e33768

    CAS  PubMed  PubMed Central  Google Scholar 

  16. Lin SJ, Litaker RW, Sunda WG (2016) Phosphorus physiological ecology and molecular mechanisms in marine phytoplankton. J Phycol 52:10–36

    CAS  PubMed  Google Scholar 

  17. Cembella AD, Antia NJ, Harrison PJ (1984) The utilization of inorganic and organic phosphorous compounds as nutrients by eukaryotic microalgae: a multidisciplinary perspective: part 1. CRC Crit Rev Microbiol 10:317–391

    CAS  Google Scholar 

  18. Hoppe HG (2003) Phosphatase activity in the sea. Hydrobiologia 493:187–200

    CAS  Google Scholar 

  19. Duhamel S, Dyhrman ST, Karl DM (2010) Alkaline phosphatase activity and regulation in the North Pacific Subtropical Gyre. Limnol Oceanogr 55:1414–1425

    CAS  Google Scholar 

  20. Labry C, Delmas D, Youenou A, Quere J, Leynaert A, Fraisse S, Raimonet M, Ragueneau O (2016) High alkaline phosphatase activity in phosphate replete waters: The case of two macrotidal estuaries. Limnol Oceanogr 61:1513–1529

    CAS  Google Scholar 

  21. Davis CE, Mahaffey C (2017) Elevated alkaline phosphatase activity in a phosphate-replete environment: Influence of sinking particles. Limnol Oceanogr 62:2389–2403

    CAS  Google Scholar 

  22. Jones JG (1972) Studies on freshwater micro-organisms: phosphatase activity in lakes of differing degrees of eutrophication. J Ecol 60:777–791

    CAS  Google Scholar 

  23. González-Gil S, Keafer BA, Jovine RVM, Aguilera A, Lu SH, Anderson DM (1998) Detection and quantification of alkaline phosphatase in single cells of phosphorus-starved marine phytoplankton. Mar Ecol Prog Ser 164:21–35

    Google Scholar 

  24. Nicholson D, Dyhrman S, Chavez F, Paytan A (2006) Alkaline phosphatase activity in the phytoplankton communities of Monterey Bay and San Francisco Bay. Limnol Oceanogr 51:874–883

    Google Scholar 

  25. Ou LJ, Huang BQ, Hong HS, Qi YZ, Lu SH (2010) Comparative alkaline phosphatase characteristics of the algal bloom species Prorocentrum donghaiense, Alexandrium catenella and Skeletonema costatum. J Phycol 46:260–265

    Google Scholar 

  26. Vrba J, Macholdová M, Nedbalová L, Nedoma J, Šorf M (2018) An experimental insight into extracellular phosphatases-differential induction of cell-specific activity in Green algae cultured under various phosphorus conditions. Front Microbiol 9:271

    PubMed  PubMed Central  Google Scholar 

  27. Lin X, Wang L, Shi X, Lin S (2015) Rapidly diverging evolution of an atypical alkaline phosphatase (PhoAaty) in marine phytoplankton: insights from dinoflagellate alkaline phosphatases. Front Microbiol 6:868

    PubMed  PubMed Central  Google Scholar 

  28. Pereira N, Shilova IN, Zehr JP (2016) Molecular markers define progressing stages of phosphorus limitation in the nitrogen-fixing cayanobacterium, Crocosphaera. J Phycol 52:274–282

    CAS  PubMed  Google Scholar 

  29. Zhang C, Luo H, Huang LM, Lin SJ (2017) Molecular mechanism of glucose-6-phosphate utilization in the dinoflagellate Karenia mikimotoi. Harmful Algae 67:74–84

    CAS  PubMed  Google Scholar 

  30. Lin X, Zhang H, Cui YD, Lin SJ (2012) High sequence variability, diverse subcellular localizations, and ecological implications of alkaline phosphatase in dinoflagellates and other eukaryotic phytoplankton. Front Microbiol 3:235

    CAS  PubMed  PubMed Central  Google Scholar 

  31. Li TC, Guo CT, Zhang YQ, Wang C, Lin X, Lin SJ (2018) Identification and expression analysis of an atypical alkaline phosphatase phosphatase in Emiliania huxleyi. Front Microbiol 9:2156

    PubMed  PubMed Central  Google Scholar 

  32. Meseck SL, Alix JH, Wikfors GH, Ward JE (2009) Differences in the soluble, residual phosphate concentrations at which coastal phytoplankton species up-regulate alkaline-phosphatase expression, as measured by flow-cytometric detection of ELF-97® fluorescence. Estuar Coasts 32:1195–1204

    CAS  Google Scholar 

  33. Hung JJ, Chen CH, Gong GC, Sheu DD, Shiah FK (2003) Distributions, stoichiometric patterns and cross-shelf exports of dissolved organic matter in the East China Sea. Deep-Sea Res II 50:1127–1145

    CAS  Google Scholar 

  34. Li J, Glibert PM, Zhou MJ, Lu SH, Lu DD (2009) Relationships between nitrogen and phosphorus forms and ratios and the development of dinoflagellate blooms in the East China Sea. Mar Ecol Prog Ser 383:11–26

    CAS  Google Scholar 

  35. Fang TH (2004) Phosphorus speciation and budget of the East China Sea. Cont Shelf Res 24:1285–1299

    Google Scholar 

  36. Li MZ, Li L, Shi XG, Lin LX, Lin SJ (2015) Effects of phosphorus deficiency and adenosine 5’-triphosphate (ATP) on growth and cell cycle of the dinoflagellate Prorocentrum donghaiense. Harmful Algae 47:35–41

    CAS  Google Scholar 

  37. Ou LJ, Huang XY, Huang BQ, Qi YZ, Lu SH (2015) Growth and competition for different forms of organic phosphorus by the dinoflagellate Prorocentrum donghaiense with the dinoflagellate Alexandrium catenella and with the diatom Skeletonema costatum s.l. Hydrobiologia 754:29–41

    CAS  Google Scholar 

  38. Ou LJ, Wang D, Huang BQ, Hong HS, Qi YZ, Lu SH (2008) Comparative study on phosphorus strategies of three typical harmful algae in Chinese coastal waters. J Plankton Res 30:1007–1017

    CAS  Google Scholar 

  39. Heil CA, Glibert PM, Fan C (2005) Prorocentrum minimum (Pavillard) Schiller A review of a harmful algal bloom species of growing worldwide importance. Harmful Algae 4:449–470

    CAS  Google Scholar 

  40. Ou LJ, Lundgren V, Lu SH, Granéli E (2014) The effect of riverine dissolved organic matter and other nitrogen forms on the growth and physiology of the dinoflagellate Prorocentrum minimum (Pavillard) Schiller. J Sea Res 85:499–507

    Google Scholar 

  41. Grasshoff K, Kremling K, Ehrhardt M (1999) Methods of Seawater Analysis. Wiley-VCH, Weinheim

    Google Scholar 

  42. Sunda WG, Price NM, Morel FMM (2005) Trace metal ion buffers and their use in culture studies. In: Andersen RA (ed) Algal Culturing Techniques. Academic, Burlington, pp 35–64

    Google Scholar 

  43. Guillard RRL (1973) Methods for microflagellates and nanoplankton. In: Stein JR (ed) Handbook of phycological methods: culture methods and growth measurements. Cambridge University Press, Cambridge, pp 69–85

    Google Scholar 

  44. Hillebrand H, Dürselen C, Kirschtel D, Pollingher U, Zohary T (1999) Biovolume calculation for pelagic and benthic microalgae. J Phycol 35:403–424

    Google Scholar 

  45. Parsons TR, Yoshiaki M, Lalli CM (1984) A manual of chemical and biological methods for seawater analysis. Pergamon Press, Oxford

    Google Scholar 

  46. Valderrama JC (1995) Methods of nutrient analysis. In: Hallegraeff GM, Anderson DM, Cembella AD (eds) Manual on harmful marine microalgae. IOC and Guides. UNESCO Publ, Paris, pp 251–568

    Google Scholar 

  47. Solórzano L, Sharp J (1980) Determination of total dissolved phosphorus and particulate phosphorus in natural waters. Limnol Oceanogr 25:754–758

    Google Scholar 

  48. Hoppe HG (1983) Significance of exoenzymatic activities in the ecology of brackish water: measurements by means of methylumbelliferyl-substrates. Mar Ecol Prog Ser 11:299–308

    CAS  Google Scholar 

  49. Kwon HK, Oh SJ, Yang H (2011) Ecological significance of alkaline phosphatase activity and phosphatase-hydrolyzed phosphorus in the northern part of Gamak Bay, Korea. Mar Pollut Bull 62:2476–2482

    CAS  PubMed  Google Scholar 

  50. Dyhrman ST, Ruttenberg KC (2006) Presence and regulation of alkaline phosphatase activity in eukaryotic phytoplankton from the coastal ocean: implications for dissolved organic phosphorus remineralization. Limnol Oceanogr 51:1381–1390

    CAS  Google Scholar 

  51. Artigas J, Soley S, Pérez-Baliero MC, Romaní AM, Ruiz-González C, Sabater S (2012) Phosphorus use by planktonic communities in a large regulated Mediterranean river. Sci Total Environ 426:180–187

    CAS  PubMed  Google Scholar 

  52. Boǵe G, Lespilette M, Jamet D, Jamet J (2017) Role of DOP on the alkaline phosphatase activity of size fractionated plankton in coastal waters in the NW Mediterranean Sea (Toulon Bay, France). Mar Pollut Bull 117:264–273

    PubMed  Google Scholar 

  53. Bogé G, Lespilette M, Jamet D, Jamet J (2014) Analysis of the role of DOP on the particulate phosphatase activity in Toulon Bay (N.W. Mediterranean Sea, France). Mar Pollut Bull 86:342–348

    PubMed  Google Scholar 

  54. Litchman E, Nguyen BLV (2008) Alkaline phosphatase activity as a function of internal phosphorus concentration in freshwater phytoplankton. J Phycol 44:1379–1383

    CAS  PubMed  Google Scholar 

  55. Rychtecký P, Řeháková K, Kozlíková E, Vrba J (2015) Light availability may control extracellular phosphatase production in turbid environment. Microb Ecol 69:37–44

    PubMed  Google Scholar 

  56. Jauzein C, Labry C, Youenou A, Quéré J, Delmas D, Collos Y (2010) Growth and phosphorus uptake by the toxic dinoflagellate Alexandrium catenella (Dinophyceae) in response to phosphate limitation. J Phycol 46:926–936

    CAS  Google Scholar 

  57. Bogé G, Lespilette M, Jamet D, Jamet JL (2012) Role of seawater DIP and DOP in controlling bulk alkaline phosphatase activity in N.W. Mediterranean Sea (Toulon, France). Mar Pollut Bull 64:1989–1996

    PubMed  Google Scholar 

  58. Lim JH, Lee CW, Bong CW, Affendi YA, Hii YS, Kudo I (2018) Distributions of particulate and dissolved phosphorus in aquatic habitats of Peninsular Malaysia. Mar Pollut Bull 128:415–427

    CAS  PubMed  Google Scholar 

  59. Nausch M (1998) Alkaline phosphatase activities and the relationship to inorganic phosphate in the Pomeranian Bight (southern Baltic Sea). Aquat Microb Ecol 16:87–94

    Google Scholar 

  60. Dignum M, Hoogveld H, Matthijs HCP, Laanbroek HJ, Pel R (2004) Detecting the phosphate status of phytoplankton by enzyme-labelled fluorescence and flow cytometry. FEMS Microbiol Ecol 48:29–38

    CAS  PubMed  Google Scholar 

  61. Fuentes S, Wikfors GH, Meseck S (2014) Silicon deficiency induces alkaline phosphatase enzyme activity in cultures of four marine diatoms. Estuar Coasts 37:312–324

    CAS  Google Scholar 

  62. Ou LJ, Huang BQ, Lin LZ, Hong HS, Zhang F, Chen ZZ (2006) Phosphorus stress of phytoplankton in Taiwan Strait using bulk and single-cell alkaline phosphatase assay. Mar Ecol Prog Ser 327:95–106

    CAS  Google Scholar 

  63. Girault M, Arakawa H, Hashihama F (2013) Phosphorus stress of microphytoplankton community in the western subtropical North Pacfic. J Plankton Res 35:146–157

    CAS  Google Scholar 

  64. Xu Y, Wahlund TM, Feng L, Shaked Y, Morel FMM (2006) A novel alkaline phosphatase in the Coccolithophore Emiliania huxleyi (Prymnesiophyceae) and its regulation by phosphorus. J Phycol 42:835–844

    CAS  Google Scholar 

  65. Landry C, Tremblay L (2012) Compositional differences between size classes of dissolved rganic matter from freshwater and seawater revealed by an HPLC-FTIR system. Environ Sci Technol 46:1700–1707

    CAS  PubMed  Google Scholar 

  66. Young EB, Tucker RC, Pansch LA (2010) Alkaline phosphatase in freshwater Cladophora-Epiphyte assemblages: regulation in response to phosphorus supply and localization. J Phycol 46:93–101

    CAS  Google Scholar 

Download references

Acknowledgments

The authors thank the captain and crew of RV “Science 3,” who made concerted efforts during sampling. The authors thank Prof. Douding Lu and Dr. Xinfeng Dai for providing data of P. donghaiense density. The authors also thank the two anonymous reviewers for their helpful comments.

Funding

This work was financially supported by the National Key R&D Program of China (No. 2017YFC1404300) and the National Natural Science Foundation of China (grant numbers 41776121 and 41176087).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Linjian Ou or Songhui Lu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ou, L., Qin, X., Shi, X. et al. Alkaline phosphatase activities and regulation in three harmful Prorocentrum species from the coastal waters of the East China Sea. Microb Ecol 79, 459–471 (2020). https://doi.org/10.1007/s00248-019-01399-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00248-019-01399-3

Keywords

Navigation