Skip to main content
Log in

Contrasting Water Quality Treatments Result in Structural and Functional Changes to Wetland Plant-Associated Microbial Communities in Lab-Scale Mesocosms

  • Environmental Microbiology
  • Published:
Microbial Ecology Aims and scope Submit manuscript

Abstract

The impact of contrasting water quality treatments on wetland plant-associated microbial communities was investigated in this study using 12 lab-scale wetland mesocosms (subsurface flow design) planted with reed canary grass (Phalaris arundinacea) or water speedwell (Veronica anagallis-aquatica) over a 13-week period. Mesocosms received water collected from two sites along the Grand River (Ontario, Canada) designated as having either high or poor water quality according to Grand River Conservation Authority classifications. All mesocosms were established using sediment collected from the high water quality site and received water from this source pre-treatment. Resulting changes to microbial community structure were assessed using PCR-denaturing gel gradient electrophoresis (DGGE) on microbial 16S rDNA sequences extracted from rhizoplane, rhizosphere, and water samples before and after exposure to water quality treatments. Functional community changes were determined using Biolog™ EcoPlates which assess community-level carbon source utilization profiles. Wetland mesocosm removal of inorganic nutrients (N, P) and fecal coliforms was also determined, and compared among treatments. Treatment-specific effects were assessed using a repeated measures restricted maximum likelihood (REML) analysis. Structural and functional characteristics of rhizoplane microbial communities were significantly influenced by the interaction between plant species and water treatment (P = 0.04, P = 0.01). Plant species–specific effects were observed for rhizosphere structural diversity (P = 0.01) and wetland water community metabolic diversity (P = 0.03). The effect of water treatment alone was significant for structural diversity measurements in wetland water communities (P = 0.03). The effect of plant species, water quality treatment, and the interaction between the two is dependent on the microhabitat type (rhizoplane, rhizosphere, or water). Rhizoplane communities appear to be more sensitive to water quality–specific environmental changes and may be a good candidate for microbial community-based monitoring of wetland ecosystems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Vymazal J (2007) Removal of nutrients in various types of constructed wetlands. Sci. Total Environ. 380:48–65

    Article  CAS  PubMed  Google Scholar 

  2. Wang X, Lu Y, Han J, He G, Wang T (2007) Identification of anthropogenic influences on water quality of rivers in Taihu watershed. J. Environ. Sci. (China) 19:475–481

    Article  CAS  Google Scholar 

  3. Lamers LMP, Falla S-J, Samborska EM, van Dulken IAR, van Hengstum G, Roelofs JGM (2002) Factors controlling the extent of eutrophication and toxicity in sulfate-polluted freshwater wetlands. Limnol. Oceanogr. 47:585–593

    Article  CAS  Google Scholar 

  4. Faulwetter JL, Gagnon V, Sundberg C, Chazarenc F, Burr MD, Brisson J, Camper AK, Stein OR (2009) Microbial processes influencing performance of treatment wetlands: a review. Ecol. Eng. 35:987–1004

    Article  Google Scholar 

  5. Cabral JPS (2010) Water microbiology. Bacterial pathogens and water. Int. J. Environ. Res. Public Health 7:3657–3703

    Article  PubMed  PubMed Central  Google Scholar 

  6. Johnston CA (1991) Sediment and nutrient retention by freshwater wetlands: effects on surface water quality. Crit. Rev. Environ. Control. 21:491–565

    Article  Google Scholar 

  7. Stottmeister U, Wießner A, Kuschk P, Kappelmeyer U, Kästner M, Bederski O, Müller RA, Moormann H (2003) Effects of plants and microorganisms in constructed wetlands for wastewater treatment. Biotechnol. Adv. 22:93–117

    Article  CAS  PubMed  Google Scholar 

  8. Bonfante P, Anca IA (2009) Plants, mycorrhizal fungi, and bacteria: a network of interactions. Annu. Rev. Microbiol. 63:363–383

    Article  CAS  PubMed  Google Scholar 

  9. Berendsen RL, Pieterse CM, Bakker PA (2012) The rhizosphere microbiome and plant health. Trends Plant Sci. 17:478–486

    Article  CAS  PubMed  Google Scholar 

  10. Baudoin E, Benizri E, Guckert A (2003) Impact of artificial root exudates on the bacterial community structure in bulk soil and maize rhizosphere. Soil Biol. Biochem. 35:1183–1192

    Article  CAS  Google Scholar 

  11. Philippot L, Raaijmakers JM, Lemanceau P, van der Putten WH (2013) Going back to the roots: the microbial ecology of the rhizosphere. Nat Rev Microbiol. 11:789–799

    Article  CAS  PubMed  Google Scholar 

  12. Edwards J, Johnson C, Santos-Medellin C, Lurie E, Podishetty NK, Bhatnagar S, Eisen JA, Sundaresan V (2015) Structure, variation, and assembly of the root-associated microbiome of rice. PNAS 112:E911–E920. www.pnas.org/cgi/doi/10.1073/pnas.1414592112. Accessed 5 Feb 2018

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Muratova A, Hübner TH, Tischer S, Turkovskaya O, Möder M, Kuschk P (2003) Plant-rhizosphere-microflora association during phytoremediation of PAH-contaminated soil. Int J Phytorem 5:137–151

    Article  CAS  Google Scholar 

  14. Haichar FEZ, Marol C, Berge O, Rangel-Castro JI, Prosser JI, Balesdent J, Heulin T, Achiuak W (2008) Plant host habitat and root exudates shape soil bacterial community structure. ISME J 2:1221–1230

    Article  CAS  PubMed  Google Scholar 

  15. Hartmann A, Schmid M, van Tuinen D, Berg G (2009) Plant-driven selection of microbes. Plant Soil 321:235–257

    Article  CAS  Google Scholar 

  16. Costa R, Götz M, Mrotzek N, Lottmann J, Berg G, Smalla K (2006) Effects of site and plant species on rhizosphere community structure as revealed by molecular analysis of microbial guilds. FEMS Microbiol. Ecol. 56:236–249

    Article  CAS  PubMed  Google Scholar 

  17. Zhuang X, Chen J, Shim H, Bai Z (2007) New advances in growth promoting rhizobacteria for phytoremediation. Environ. Int. 33:406–413

    Article  PubMed  Google Scholar 

  18. Ahn C, Gillevet PM, Sikaroodi M (2007) Molecular characterization of microbial communities in treatment microcosm wetlands as influenced by macrophytes and phosphorous loading. Ecol. Indic. 7:852–863

    Article  Google Scholar 

  19. Zhao Y, Liu B, Zhang W, Hu C, Shuqing A (2010) Effects of plant and influent C:N:P ratio on microbial diversity in pilot-scale constructed wetlands. Ecol. Eng. 36:441–449

    Article  Google Scholar 

  20. Bowen JL, Ward BB, Morrison HG, Hobbie JE, Valiela I, Deegan L, Sogin LS (2011) Microbial community composition in sediments resists perturbation by nutrient enrichment. ISME J 5:1540–1548

    Article  PubMed  PubMed Central  Google Scholar 

  21. Lansdown RV (2014) Phalaris arundinacea. The IUCN Red List of Threatened Species. https://doi.org/10.2305/IUCN.UK.2014-1.RLTS.T164064A1021826.en. Accessed 06 March 2019.

  22. Gupta AK, Lansdown RV (2013) Veronica anagallis-aquatica. The IUCN Red List of Threatened Species. https://doi.org/10.2305/IUCN.UK.2013-1.RLTS.T164036A1019922.en. Accessed 06 March 2019

  23. Loomer HA, Cooke SE (2011) Water quality in the Grand River Watershed: current conditions and trends (2003–2008). Grand River Conservation Authority, Cambridge, ON, CA. https://www.sourcewater.ca/en/source-protection-areas/resources/Documents/Grand/Grand_Reports_WaterQuality_2011.pdf. Accessed 25 January 2015

  24. Grayston SJ, Wang S, Campbell CD, Edwards ED (1998) Selective influence of plant species on microbial diversity in the rhizosphere. Soil Biol. Biochem. 30:369–378

    Article  CAS  Google Scholar 

  25. Miyasaka SC, Buta JG, Howell RK, Foy CD (1991) Mechanism of aluminum tolerance in snapbeans root exudation of citric acid. Plant Physiol. 96:737–743

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Bulgarelli D, Rott M, Schlaeppi K, van Themaat EVL, Ahmadinejad N, Assenza F, Rauf P, Huettel B, Reinhardt R, Schmelzer E, Peplies J, Gloeckner FO, Amann R, Eickhorst T, Schulze-Lefert P (2012) Revealing structure and assembly cures for Arabidopsis root-inhabiting bacterial microbiota. Nature 488:91–95

    Article  CAS  PubMed  Google Scholar 

  27. Weber KP, Mitzel MR, Slawson RM, Legge RL (2011) Effect of ciprofloxacin on microbiological development in wetland mesocosms. Water Res. 45:3185–3196

    Article  CAS  PubMed  Google Scholar 

  28. Ogino A, Koshikawa H, Nakahara T, Uchiyama H (2001) Succession of microbial communities during a biostimulation process as evaluated by DGGE and clone library analysis. J. Appl. Microbiol. 91:625–635

    Article  CAS  PubMed  Google Scholar 

  29. Muyzer G, de Waal EC, Uitterlinden AG (1993) Profiling complex microbial populations by denaturing gradient gel electrophoresis analysis of polymerase chain reaction amplified genes coding for 16S rRNA. Appl. Environ. Microbiol. 59:695–700

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Green SJ, Leigh MB, Neufeld JD (2010) Denaturing gel gradient electrophoresis (DGGE) for microbial community analysis. In: Timmins KN (ed) Microbiology of hydrocarbons, oils, lipids and derived compounds. Springer-Verlag, Heidelberg, pp 4137–4158

    Chapter  Google Scholar 

  31. Weber KP, Legge RL (2010) Community-level physiological profiling. In: Cummings SP (ed) Bioremediation, Methods in Molecular Biology. Humana Press, New York, pp 263–281

    Google Scholar 

  32. Aguirre de Cárcer D, Martín M, Mackova M, Macek T, Karlson U, Rivilla R (2007) The introduction of genetically modified microorganisms designed for rhizoremediation induces changes on native bacteria in the rhizosphere but not in the surrounding soil. ISME J 1:215–223

    Article  Google Scholar 

  33. Mula-Michel HP, Williams MA (2013) Soil type modestly impacts bacterial community succession associated with decomposing grass detrituspheres. Soil Sci. Soc. Am. J. 77:133–144

    Article  CAS  Google Scholar 

  34. Hufham JB (1974) Evaluating the membrane fecal coliform test by using Escherichia coli as the indicator organism. Appl. Environ. Microbiol. 27:771–776

    Article  CAS  Google Scholar 

  35. Jamieson RC, Gordon RJ, Sharples KE, Stratton GW, Madani A (2002) Movement and persistence of fecal bacteria in agricultural soils and subsurface drainage water: a review. Can. Biosyst. Eng. 44:1.1–1.9

    Google Scholar 

  36. Harwood VJ, Levine AD, Scott TM, Chivukula V, Lukasik J, Farrah SR, Rose JB (2005) Validity of the indicator organism paradigm for pathogen reduction in reclaimed water and public health protection. Appl. Environ. Microbiol. 71:3163–3170

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. American Public Health Association (2012) Standard methods for the examination of water and wastewater, 22nd edn. American Water Work Association and Water Environment Federation, Washington

    Google Scholar 

  38. Shannon CE (1948) A mathematical theory of communication. Bell Syst Tech J 27:379–423

    Article  Google Scholar 

  39. Gafan GP, Lucas VS, Roberts GJ, Petrie A, Wilson M, Spratt DA (2005) Statistical analyses of complex denaturing gradient gel electrophoresis profiles. J. Clin. Microbiol. 43:3971–3978

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Zak JC, Willig MR, Moorhead DL, Wildman HG (1994) Functional diversity of microbial communities: a quantitative approach. Soil Biol. Biochem. 26:1101–1108

    Article  Google Scholar 

  41. Garland JL (1997) Analysis and interpretation of community-level physiological profiles in microbial ecology. FEMS Microbiol. Ecol. 4:289–300

    Article  Google Scholar 

  42. Weber KP, Legge RL (2009) One-dimensional metric for tracking bacterial community divergence using sole carbon source utilization patterns. J Microb Methods 79:55–61

    Article  CAS  Google Scholar 

  43. Frąc M, Oszust K, Lipiec J (2012) Community level physiological profiles (CLPP), characterization and microbial activity of soil amended with dairy sewage sludge. Sensors (Basel) 12:3253–3268

    Article  Google Scholar 

  44. Choi KH, Dobbs FC (1999) Comparison of two kinds of Biolog microplates (GN and ECO) in their ability to distinguish among aquatic microbial communities. J. Microbiol. Methods 36:203–213

    Article  CAS  PubMed  Google Scholar 

  45. Belanche A, Newbold CJ, Lin W, Stevens PR, Kingston-Smith AH (2017) A systems biology approach reveals differences in the dynamics of colonization and degradation of grass vs. hay by rumen microbes with minor effects of vitamin E supplementation. Front. Microbiol. https://doi.org/10.3389/fmicb.2017.01456

  46. Srivastaval JK, Chandra H, Kalra SJS, Mishra P, Khan H, Yadav P (2017) Plant–microbe interaction in aquatic system and their role in the management of water quality: a review. Appl Water Sci 7:1079–1090

    Article  CAS  Google Scholar 

  47. Weber KP (2016) Microbial community assessment in wetlands for water pollution control: past, present, and future outlook. Water 8:503

    Article  CAS  Google Scholar 

  48. Smalla K, Wieland G, Buchner A, Zock A, Parzy J, Kaiser S, Roskot N, Heuer H, Berg G (2001) Bulk and rhizosphere soil bacterial communities studied by denaturing gradient gel electrophoresis: plant-dependent enrichment and seasonal shifts revealed. Appl. Environ. Microbiol. 67:4742–4751

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Wu L, Chen J, Xiao Z, Zhu X, Wang J, Wu H, Wu Y, Zhang Z, Lin W (2018) Barcoded pyrosequencing reveals a shift in the bacterial community in the rhizosphere and rhizoplane of Rehmannia glutinosa under consecutive monoculture. Int. J. Mol. Sci. 19:850

    Article  PubMed Central  CAS  Google Scholar 

  50. Ahn C, Gillevet PM, Sikaroodi M (2007) Molecular characterization of microbial communities in treatment microcosm wetlands as influenced by macrophytes and phosphorus loading. Ecol. Indic. 7:852–863

    Article  Google Scholar 

  51. Tlili A, Bérard A, Roulier J-L, Volat B, Montuelle B (2010) PO4 3− dependence of the tolerance of autotrophic and heterotrophic biofilm communities to copper and diuron. Aquat. Toxicol. 98(2):165–177

    Article  CAS  PubMed  Google Scholar 

  52. Van der Gucht K, Cottenie K, Muylaert K, Vloemans N, Cousin S, Declerck S, Jeppesen E, Conde-Porcuna J, Schwenk K, Zwart G, Degans H, Vyverman W, De Meester L (2007) The power of species sorting: local factors drive bacterial community composition over a wide range of spatial scales. PNAS 104:20404–20409

    Article  PubMed  PubMed Central  Google Scholar 

  53. Kirchman DL, Dittel AI, Findlay SE, Fischer D (2004) Changes in bacterial activity and community structure in response to dissolved organic matter in the Hudson River, New York. Aquat. Microb. Ecol. 35:243–257

    Article  Google Scholar 

  54. Stout LM, Nüsslein K (2005) Shifts in rhizoplane communities of aquatic plants after cadmium exposure. Appl. Environ. Microbiol. 71(5):2484–2492

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Ravit B, Ehrenfeld JG, Haggblom MM (2003) A comparison of sediment microbial communities associated with Phragmites australis and Spartina alterniflora in two brackish wetlands of New Jersey. Estuaries 26:465–474

    Article  Google Scholar 

  56. Broeckling CD, Broz AK, Bergelson J, Manter DK, Vivanco JM (2008) Root exudates regulate soil fungal community compsotition and diversity. Appl. Environ. Microbiol. 74:738–744

    Article  CAS  PubMed  Google Scholar 

  57. Shi S, Richardson AE, O’Callaghan M, DeAngelis KM, Jones EE, Stewart A, Firestone MK, Condron LM (2011) Effects of selected root exudate components on soil bacterial communities. FEMS Microbiol. Ecol. 77(3):600–610

    Article  CAS  PubMed  Google Scholar 

  58. Fierer N, Jackson RB (2006) The diversity and biogeography of soil bacterial communities. Proc. Natl. Acad. Sci. U. S. A. 103:626–631

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Marschner H, Römheld V (1983) In vivo measurement of root-induced pH changes at the soil-root interface: effect of plant species and nitrogen source. Z. Pflanzenphysiol. 111(3):241–251

    Article  CAS  Google Scholar 

  60. Hissinger P, Plassard C, Tang C, Jaillard B (2003) Origins of root mediated pH changes in the rhizosphere and their responses to environmental constraints: a review. Plant Soil 248(1–2):43–59

    Article  Google Scholar 

  61. Bardgett RD, Mawdsley JL, Edwards S, Hobbs PJ, Rodwell JS, Davies WJ (1999) Plant species and nitrogen effects on soil biological properties of temperate upland grasslands. Funct. Ecol. 13:650–660

    Article  Google Scholar 

  62. Berg G, Roskot N, Steidle A, Eber L, Zock A, Smalla K (2002) Plant-dependent genotypic and phenotypic diversity of antagonistic rhizobacteria isolated from different Verticillum host plants. Appl. Environ. Microbiol. 68:3328–3338

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Ladygina N, Hedlund K (2010) Plant species influence microbial diversity and carbon allocation in the rhizosphere. Soil Biol. Biochem. 42:162–168

    Article  CAS  Google Scholar 

  64. Hennion N, Durand M, Vriet C, Doidy J, Maurousset L, Lemoine R, Pourtau N (2019) Sugars en route to the roots. Transport, metabolism and storage within plant roots and towards microorganisms of the rhizosphere. Physiol. Plant. 165(1):44–57

    Article  CAS  PubMed  Google Scholar 

  65. Grayston SJ, Vaughn D, Jones D (1996) Rhizosphere carbon flow in trees, in comparison with annual plants: the importance of root exudation and its impact on microbial activity. Appl. Soil Ecol. 5:29–56

    Article  Google Scholar 

  66. Bossio DH, Scow KM (1995) Impact of carbon and flooding on the metabolic diversity of microbial communities in soil. Appl. Environ. Microbiol. 61:4043–4050

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Grayston SJ, Griffith GS, Mawdsley JL, Campbell CD, Bardgett RD (2001) Accounting for variability in soil microbial communities of temperate upland grassland ecosystems. Soil Biol. Biochem. 33:533–551

    Article  CAS  Google Scholar 

  68. Clairmont LK, Stevens KJ, Slawson RM (2019) Site-specific differences in microbial community structure and function within the rhizosphere and rhizoplane of wetland plants is plant species dependent. Rhizosphere 9:56–68

    Article  Google Scholar 

  69. Sasse J, Martinoia E, Northen T (2018) Feed your friends: do plant exudates shape the root microbiome? Trends Plant Sci. 23(1):25–41

    Article  CAS  PubMed  Google Scholar 

  70. Hodge A (2004) The plastic plant: root responses to heterogeneous supplies of nutrients. New Phytol. 162:9–24

    Article  Google Scholar 

  71. Harder W, Dijkhuizen L (1983) Physiological responses to nutrient limitation. Annu. Rev. Microbiol. 37:1–23

    Article  CAS  PubMed  Google Scholar 

  72. Schimel JP, Weintraub MN (2003) The implications of exoenzyme activity on microbial carbon and nitrogen limitation in soil: a theoretical model. Soil Biol. Biochem. 35:549–563

    Article  CAS  Google Scholar 

  73. Atlas RM, Bartha R (1992) Hydrocarbon biodegradation and oil spill bioremediation. Adv. Microb. Ecol. 12:287–338

    Article  CAS  Google Scholar 

  74. MacNaughton SJ, Stephen JR, Venosa AD, Davis GA, Chang YJ, White DC (1999) Microbial population changes during bioremediation of an experimental oil spill. Appl. Environ. Microbiol. 65:3566–3574

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Nyman JA (1999) Effect of crude oil and chemical additives on metabolic activity of mixed microbial populations in fresh marsh soils. Microb. Ecol. 37:152–162

    Article  CAS  PubMed  Google Scholar 

  76. Bachoon DS, Araujo R, Molina M, Hodson RE (2001) Microbial community dynamics and evaluation of bioremediation strategies in oil-impacted salt marsh sediment microcosms. J. Ind. Microbiol. Biotechnol. 27:72–79

    Article  CAS  PubMed  Google Scholar 

  77. Logan MV, Reardon KF, Figueroa LA, McLain JET, Ahmann DM (2005) Microbial community activities during establishment, performance, and decline of bench-scale passive treatment systems for mine drainage. Water Res. 39:4537–4551

    Article  CAS  PubMed  Google Scholar 

  78. Yergeau E, Lawrence JR, Sanschagrin S, Walser MJ, Korber DR et al (2012) Next-generation sequencing of microbial communities in the Athabasca River and its tributaries in relation to oil sands mining activities. Appl. Environ. Microbiol. 78:7626–7637

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Bartlett CK (2016) Sulfate-reducing bacteria community analysis: ISCO/ISB coupled remediation. Dissertation, Wilfrid Laurier University

  80. Monreal CM, Zhang J, Koziel S, Vidmar J, González M, Matus F, Baxi S, Wu S, DeRosa M, Etcheverria P (2018) Bacterial community structure associated with the addition of nitrogen and the dynamics of soluble carbon in the rhizosphere of canola (Brassica napus) grown in a Podzol. Rhizosphere 5:16–25

    Article  Google Scholar 

Download references

Acknowledgments

The authors would like to acknowledge the Southern Ontario Water Consortium for infrastructure support.

Funding

The study was supported by Natural Sciences and Engineering Research Council of Canada in the form of a Discovery Grant (GR-RGPGP 2014-00060-R) to RMS and a Doctoral Postgraduate Scholarship to LKC (471103-2015).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lindsey K. Clairmont.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interest.

Electronic Supplementary Material

ESM 1

(DOCX 1408 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Clairmont, L.K., Slawson, R.M. Contrasting Water Quality Treatments Result in Structural and Functional Changes to Wetland Plant-Associated Microbial Communities in Lab-Scale Mesocosms. Microb Ecol 79, 50–63 (2020). https://doi.org/10.1007/s00248-019-01389-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00248-019-01389-5

Keywords

Navigation