Skip to main content
Log in

Diversity and Coding Potential of the Microbiota in the Photic and Aphotic Zones of Tropical Man-Made Lake with Intensive Aquaculture Activities: a Case Study on Temengor Lake, Malaysia

  • Microbiology of Aquatic Systems
  • Published:
Microbial Ecology Aims and scope Submit manuscript

Abstract

Although freshwater biomes cover less than 1% of the Earth’s surface, they have disproportionate ecological significances. Attempts to study the taxonomy and function of freshwater microbiota are currently limited to samples collected from temperate lakes. In this study, we investigated samples from the photic and aphotic of an aquaculture site (disturbed) of Temengor Lake, a tropical lake in comparison with the undisturbed site of the lake using 16S rRNA amplicon and shotgun metagenomic approaches. Vertical changes in bacterial community composition and function of the Temengor Lake metagenomes were observed. The photic water layer of Temengor Lake was dominated by typical freshwater assemblages consisting of Proteobacteria, Actinobacteria, Bacteroidetes, Verrucomicrobia, and Cyanobacteria lineages. On the other hand, the aphotic water featured in addition to Proteobacteria, Bacteroidetes, Verrucomicrobia, and two more abundant bacterial phyla that are typically ubiquitous in anoxic habitats (Chloroflexi and Firmicutes). The aphotic zone of Temengor Lake exhibited genetic potential for nitrogen and sulfur metabolisms for which terminal electron acceptors other than oxygen are used in the reactions. The aphotic water of the disturbed site also showed an overrepresentation of genes associated with the metabolism of carbohydrates, likely driven by the enrichment of nutrient resulting from aquaculture activities at the site. The results presented in this study can serve as a basis for understanding the structure and functional capacity of the microbial communities in the photic and aphotic zones/water layers of tropical man-made lakes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Lindström ES, Feng XM, Granéli W, Kritzberg ES (2010) The interplay between bacterial community composition and the environment determining function of inland water bacteria. Limnol. Oceanogr. 55:2052–2060

    Article  Google Scholar 

  2. Lindström ES, Kamst-Van Agterveld MP, Zwart G (2005) Distribution of typical freshwater bacterial groups is associated with pH, temperature, and lake water retention time. Appl. Environ. Microbiol. 71:8201–8206

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Yannarell AC, Triplett EW (2005) Geographic and environmental sources of variation in lake bacterial community composition. Appl. Environ. Microbiol. 71:227–239

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. García Molinos J, Viana M, Brennan M, Donohue I (2015) Importance of long-term cycles for predicting water level dynamics in natural lakes. PLoS One 10:e0119253

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Newton RJ, Jones SE, Eiler A, McMahon KD, Bertilsson S (2011) A guide to the natural history of freshwater lake bacteria. Microbiol. Mol. Biol. Rev. 75:14–49

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Sunagawa S, Coelho LP, Chaffron S, Kultima JR, Labadie K, Salazar G, Djahanschiri B, Zeller G, Mende DR, Alberti A, Cornejo-Castillo FM, Costea PI, Cruaud C, d'Ovidio F, Engelen S, Ferrera I, Gasol JM, Guidi L, Hildebrand F, Kokoszka F, Lepoivre C, Lima-Mendez G, Poulain J, Poulos BT, Royo-Llonch M, Sarmento H, Vieira-Silva S, Dimier C, Picheral M, Searson S, Kandels-Lewis S, Tara Oceans coordinators, Bowler C, de Vargas C, Gorsky G, Grimsley N, Hingamp P, Iudicone D, Jaillon O, Not F, Ogata H, Pesant S, Speich S, Stemmann L, Sullivan MB, Weissenbach J, Wincker P, Karsenti E, Raes J, Acinas SG, Bork P, Boss E, Bowler C, Follows M, Karp-Boss L, Krzic U, Reynaud EG, Sardet C, Sieracki M, Velayoudon D (2015) Structure and function of the global ocean microbiome. Science 348:1261359

    Article  CAS  PubMed  Google Scholar 

  7. Martín-Cuadrado A-B, López-García P, Alba J-C, Moreira D, Monticelli L, Strittmatter A, Gottschalk G, Rodríguez-Valera F (2007) Metagenomics of the deep Mediterranean, a warm bathypelagic habitat. PLoS One 2:e914

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Yergeau E, Michel C, Tremblay J, Niemi A, King TL, Wyglinski J, Lee K, Greer CW (2017) Metagenomic survey of the taxonomic and functional microbial communities of seawater and sea ice from the Canadian Arctic. Sci. Rep. 7:42242

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Ghai R, Rodŕíguez-Valera F, McMahon KD, Toyama D, Rinke R, Cristina Souza de Oliveira T et al (2011) Metagenomics of the water column in the pristine upper course of the Amazon river. PLoS One 6:e23785

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Debroas D, Humbert JF, Enault F, Bronner G, Faubladier M, Cornillot E (2009) Metagenomic approach studying the taxonomic and functional diversity of the bacterial community in a mesotrophic lake (Lac du Bourget--France). Environ. Microbiol. 11:2412–2424

    Article  CAS  PubMed  Google Scholar 

  11. Oh S, Caro-Quintero A, Tsementzi D, DeLeon-Rodriguez N, Luo C, Poretsky R, Konstantinidis KT (2011) Metagenomic insights into the evolution, function, and complexity of the planktonic microbial community of Lake Lanier, a temperate freshwater ecosystem. Appl. Environ. Microbiol. 77:6000–6011

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Rusch DB, Halpern AL, Sutton G, Heidelberg KB, Williamson S, Yooseph S, Wu D, Eisen JA, Hoffman JM, Remington K, Beeson K, Tran B, Smith H, Baden-Tillson H, Stewart C, Thorpe J, Freeman J, Andrews-Pfannkoch C, Venter JE, Li K, Kravitz S, Heidelberg JF, Utterback T, Rogers YH, Falcón LI, Souza V, Bonilla-Rosso G, Eguiarte LE, Karl DM, Sathyendranath S, Platt T, Bermingham E, Gallardo V, Tamayo-Castillo G, Ferrari MR, Strausberg RL, Nealson K, Friedman R, Frazier M, Venter JC (2007) The Sorcerer II Global Ocean sampling expedition: northwest Atlantic through eastern tropical Pacific. PLoS Biol. 5:e77

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Gabriel Z, Byron CC, Miranda PK-vA, Ferry H, Suk-Kyun H (2002) Typical freshwater bacteria: an analysis of available 16S rRNA gene sequences from plankton of lakes and rivers. Aquat. Microb. Ecol. 28:141–155

    Article  Google Scholar 

  14. SM M, Jakob P, Thomas P (2010) Spatiotemporal distribution and activity patterns of bacteria from three phylogenetic groups in an oligomesotrophic lake. Limnol. Oceanogr. 55:846–856

    Article  Google Scholar 

  15. Amarasinghe US, De Silva SS (2015). Fishes and fisheries of Asian inland lacustrine waters. In Freshwater Fisheries Ecology, J. F. Craig (Ed.). https://doi.org/10.1002/9781118394380.ch31

  16. Dahlen BF (1993) Hydropower in Malaysia. Tenaga Nasional Berhad (TNB), Bangsar 184 p

    Google Scholar 

  17. Abdul Rashid AM (2016) Private sector participation on forest conservation in Malaysia-Pulau Banding foundation story, Marrakesh, Morocco

  18. Klindworth A, Pruesse E, Schweer T, Peplies J, Quast C, Horn M, Glöckner FO (2013) Evaluation of general 16S ribosomal RNA gene PCR primers for classical and next-generation sequencing-based diversity studies. Nucleic Acids Res. 41:e1–e1

    Article  CAS  PubMed  Google Scholar 

  19. Li Y-L, Weng J-C, Hsiao C-C, Chou M-T, Tseng C-W, Hung J-H (2015) PEAT: an intelligent and efficient paired-end sequencing adapter trimming algorithm. BMC Bioinformatics 16:S2

    Article  PubMed  PubMed Central  Google Scholar 

  20. Bushnell B, Rood J, Singer E (2017) BBMerge – accurate paired shotgun read merging via overlap. PLoS One 12:e0185056

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Edgar RC, Haas BJ, Clemente JC, Quince C, Knight R (2011) UCHIME improves sensitivity and speed of chimera detection. Bioinformatics 27:2194–2200

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Caporaso JG, Kuczynski J, Stombaugh J, Bittinger K, Bushman FD, Costello EK, Fierer N, Peña AG, Goodrich JK, Gordon JI, Huttley GA, Kelley ST, Knights D, Koenig JE, Ley RE, Lozupone CA, McDonald D, Muegge BD, Pirrung M, Reeder J, Sevinsky JR, Turnbaugh PJ, Walters WA, Widmann J, Yatsunenko T, Zaneveld J, Knight R (2010) QIIME allows analysis of high-throughput community sequencing data. Nat Methods 7:335–336

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Clarke KR, Gorley RN, Somerfield PJ, WR M (2014) Change in marine communities: an approach to statistical analysis and interpretation. Primer-E Ltd, Plymouth

    Google Scholar 

  24. Li D, Liu CM, Luo R, Sadakane K, Lam TW (2015) MEGAHIT: an ultra-fast single-node solution for large and complex metagenomics assembly via succinct de Bruijn graph. Bioinformatics 31:1674–1676

    Article  CAS  PubMed  Google Scholar 

  25. Meyer F, Paarmann D, D'Souza M, Olson R, Glass EM, Kubal M, Paczian T, Rodriguez A, Stevens R, Wilke A, Wilkening J, Edwards RA (2008) The metagenomics RAST server - a public resource for the automatic phylogenetic and functional analysis of metagenomes. BMC Bioinformatics 9:386

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Parks DH, Tyson GW, Hugenholtz P, Beiko RG (2014) STAMP: statistical analysis of taxonomic and functional profiles. Bioinformatics 30:3123–3124

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Wang NF, Zhang T, Yang X, Wang S, Yu Y, Dong LL et al (2016) Diversity and composition of bacterial community in soils and lake sediments from an Arctic lake area. Front. Microbiol. 7:1170

    PubMed  PubMed Central  Google Scholar 

  28. Fang L, Chen L, Liu Y, Tao W, Zhang Z, Liu H, Tang Y (2015) Planktonic and sedimentary bacterial diversity of Lake Sayram in summer. Microbiologyopen 4:814–825

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Yannarell AC, Kent AD (2010) Bacteria, distribution and community structure. In: Likens GE (ed) Plankton of inland waters. Academic, San Diego

    Google Scholar 

  30. Biderre-Petit C, Dugat-Bony E, Mege M, Parisot N, Adrian L, Moné A, Denonfoux J, Peyretaillade E, Debroas D, Boucher D, Peyret P (2016) Distribution of Dehalococcoidia in the anaerobic deep water of a remote meromictic crater lake and detection of Dehalococcoidia-derived reductive dehalogenase homologous genes. PLoS One 11:e0145558

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Simon C, Wiezer A, Strittmatter AW, Daniel R (2009) Phylogenetic diversity and metabolic potential revealed in a glacier ice metagenome. Appl. Environ. Microbiol. 75:7519–7526

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Llirós M, Inceoğlu Ö, García-Armisen T, Anzil A, Leporcq B, Pigneur L-M, Viroux L, Darchambeau F, Descy JP, Servais P (2014) Bacterial community composition in three freshwater reservoirs of different alkalinity and trophic status. PLoS One 9:e116145

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Knief C (2015) Diversity and habitat preferences of cultivated and uncultivated aerobic methanotrophic bacteria evaluated based on pmoA as molecular marker. Front. Microbiol. 6:1346

    Article  PubMed  PubMed Central  Google Scholar 

  34. Kleindienst S, Herbst F-A, Stagars M, von Netzer F, von Bergen M, Seifert J, Peplies J, Amann R, Musat F, Lueders T, Knittel K (2014) Diverse sulfate-reducing bacteria of the Desulfosarcina/Desulfococcus clade are the key alkane degraders at marine seeps. ISME J 8:2029–2044

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Thomas F, Hehemann J-H, Rebuffet E, Czjzek M, Michel G (2011) Environmental and gut Bacteroidetes: the food connection. Front. Microbiol. 2:93

    Article  PubMed  PubMed Central  Google Scholar 

  36. Caumette P, Brochier-Armanet C, Normand P (2015) Taxonomy and phylogeny of prokaryotes. In: Bertrand J-C, Caumette P, Lebaron P, Matheron R, Normand P et al (eds) Environmental Microbiology: Fundamentals and Applications: Microbial Ecology. Springer Netherlands, Dordrecht, pp 145–190

    Google Scholar 

  37. Bragg JG, Wagner A (2009) Protein material costs: single atoms can make an evolutionary difference. Trends Genet. 25:5–8

    Article  CAS  PubMed  Google Scholar 

  38. Barberan A, Casamayor EO (2011) Euxinic freshwater hypolimnia promote bacterial endemicity in continental areas. Microb. Ecol. 61:465–472

    Article  PubMed  Google Scholar 

  39. Cole JJ, Pace ML, Caraco NF, Steinhart GS (1993) Bacterial biomass and cell size distributions in lakes: more and larger cells in anoxic waters. Limnol. Oceanogr. 38:1627–1632

    Article  Google Scholar 

  40. Glöckner FO, Zaichikov E, Belkova N, Denissova L, Pernthaler J, Pernthaler A et al (2000) Comparative 16S rRNA analysis of lake bacterioplankton reveals globally distributed phylogenetic clusters including an abundant group of Actinobacteria. Appl. Environ. Microbiol. 66:5053–5065

    Article  PubMed  PubMed Central  Google Scholar 

  41. Hahn MW, Lunsdorf H, Wu Q, Schauer M, Hofle MG, Boenigk J, Stadler P (2003) Isolation of novel ultramicrobacteria classified as Actinobacteria from five freshwater habitats in Europe and Asia. Appl. Environ. Microbiol. 69:1442–1451

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Langenheder S, Jürgens K (2001) Regulation of bacterial biomass and community structure by metazoan and protozoan predation. Limnol. Oceanogr. 46:121–134

    Article  Google Scholar 

  43. Jezbera J, Sharma AK, Brandt U, Doolittle WF, Hahn MW (2009) ‘Candidatus Planktophila limnetica’, an actinobacterium representing one of the most numerically important taxa in freshwater bacterioplankton. Int. J. Syst. Evol. Microbiol. 59:2864–2869

    Article  CAS  PubMed  Google Scholar 

  44. Warnecke F, Sommaruga R, Sekar R, Hofer JS, Pernthaler J (2005) Abundances, identity, and growth state of Actinobacteria in mountain lakes of different UV transparency. Appl. Environ. Microbiol. 71:5551–5559

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Ventura M, Canchaya C, Tauch A, Chandra G, Fitzgerald GF, Chater KF, van Sinderen D (2007) Genomics of Actinobacteria: tracing the evolutionary history of an ancient phylum. Microbiol. Mol. Biol. Rev. 71:495–548

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Eiler A, Bertilsson S (2007) Flavobacteria blooms in four eutrophic lakes: linking population dynamics of freshwater bacterioplankton to resource availability. Appl. Environ. Microbiol. 73:3511–3518

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Zeder M, Peter S, Shabarova T, Pernthaler J (2009) A small population of planktonic Flavobacteria with disproportionally high growth during the spring phytoplankton bloom in a prealpine lake. Environ. Microbiol. 11:2676–2686

    Article  PubMed  Google Scholar 

  48. Kolmonen E, Sivonen K, Rapala J, Haukka K (2004) Diversity of cyanobacteria and heterotrophic bacteria in cyanobacterial blooms in Lake Joutikas, Finland. Aquat. Microb. Ecol. 36:201–211

    Article  Google Scholar 

  49. Bauer M, Kube M, Teeling H, Richter M, Lombardot T, Allers E, Würdemann CA, Quast C, Kuhl H, Knaust F, Woebken D, Bischof K, Mussmann M, Choudhuri JV, Meyer F, Reinhardt R, Amann RI, Glöckner FO (2006) Whole genome analysis of the marine BacteroidetesGramella forsetii’ reveals adaptations to degradation of polymeric organic matter. Environ. Microbiol. 8:2201–2213

    Article  CAS  PubMed  Google Scholar 

  50. Morrison JM, Baker KD, Zamor RM, Nikolai S, Elshahed MS, Youssef NH (2017) Spatiotemporal analysis of microbial community dynamics during seasonal stratification events in a freshwater Lake (Grand Lake, OK, USA). PLoS One 12:e0177488

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Eiler A, Bertilsson S (2004) Composition of freshwater bacterial communities associated with cyanobacterial blooms in four Swedish lakes. Environ. Microbiol. 6:1228–1243

    Article  PubMed  Google Scholar 

  52. Haukka K, Kolmonen E, Hyder R, Hietala J, Vakkilainen K, Kairesalo T, Haario H, Sivonen K (2006) Effect of nutrient loading on bacterioplankton community composition in lake mesocosms. Microb. Ecol. 51:137–146

    Article  PubMed  Google Scholar 

  53. Van den Wyngaert S, Salcher MM, Pernthaler J, Zeder M, Posch T (2011) Quantitative dominance of seasonally persistent filamentous cyanobacteria (Planktothrix rubescens) in the microbial assemblages of a temperate lake. Limnol. Oceanogr. 56:97–109

    Article  Google Scholar 

  54. Salcher MM, Pernthaler J, Zeder M, Psenner R, Posch T (2008) Spatio-temporal niche separation of planktonic Betaproteobacteria in an oligo-mesotrophic lake. Environ. Microbiol. 10:2074–2086

    Article  CAS  PubMed  Google Scholar 

  55. Salcher MM, Posch T, Pernthaler J (2013) In situ substrate preferences of abundant bacterioplankton populations in a prealpine freshwater lake. ISME J 7:896–907

    Article  CAS  PubMed  Google Scholar 

  56. Salka I, Srivastava A, Allgaier M, Grossart H-P (2014) The draft genome sequence of Sphingomonas sp. strain FukuSWIS1, obtained from acidic Lake Grosse Fuchskuhle, indicates photoheterotrophy and a potential for humic matter degradation. Genome Announc 2:e01183–e01114

    Article  PubMed  PubMed Central  Google Scholar 

  57. Dimitriu PA, Pinkart HC, Peyton BM, Mormile MR (2008) Spatial and temporal patterns in the microbial diversity of a meromictic soda lake in Washington state. Appl. Environ. Microbiol. 74:4877–4888

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Frank KL, Rogers DR, Olins HC, Vidoudez C, Girguis PR (2013) Characterizing the distribution and rates of microbial sulfate reduction at Middle Valley hydrothermal vents. ISME J 7:1391–1401

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Teske A, Ramsing NB, Habicht K, Fukui M, Kuver J, Jorgensen BB et al (1998) Sulfate-reducing bacteria and their activities in cyanobacterial mats of solar lake (Sinai, Egypt). Appl. Environ. Microbiol. 64:2943–2951

    CAS  PubMed  PubMed Central  Google Scholar 

  60. Huang W, Chen X, Jiang X, Zheng B (2017) Characterization of sediment bacterial communities in plain lakes with different trophic statuses. Microbiologyopen 6:e00503

    Article  CAS  PubMed Central  Google Scholar 

  61. Yang J, Ma L, Jiang H, Wu G, Dong H (2016) Salinity shapes microbial diversity and community structure in surface sediments of the Qinghai-Tibetan Lakes. Sci. Rep. 6:25078

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Gyllenhammar A, Hakanson L (2005) Environmental consequence analyses of fish farm emissions related to different scales and exemplified by data from the Baltic--a review. Mar. Environ. Res. 60:211–243

    Article  CAS  PubMed  Google Scholar 

  63. Kawahara N, Shigematsu K, Miyadai T, Kondo R (2009) Comparison of bacterial communities in fish farm sediments along an organic enrichment gradient. Aquaculture 287:107–113

    Article  CAS  Google Scholar 

  64. Danovaro R, Corinaldesi C, La Rosa T, Luna GM, Mazzola A, Mirto S et al (2003) Aquaculture impact on benthic microbes and organic matter cycling in coastal Mediterranean sediments: a synthesis. Chem. Ecol. 19:59–65

    Article  CAS  Google Scholar 

  65. Tamminen M, Karkman A, Corander J, Paulin L, Virta M (2011) Differences in bacterial community composition in Baltic Sea sediment in response to fish farming. Aquaculture 313:15–23

    Article  Google Scholar 

  66. Tomassetti P, Gennaro P, Lattanzi L, Mercatali I, Persia E, Vani D, Porrello S (2016) Benthic community response to sediment organic enrichment by Mediterranean fish farms: case studies. Aquaculture 450:262–272

    Article  CAS  Google Scholar 

  67. Steffen MM, Li Z, Effler TC, Hauser LJ, Boyer GL, Wilhelm SW (2012) Comparative metagenomics of toxic freshwater cyanobacteria bloom communities on two continents. PLoS One 7:e44002

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Backer LC, Manassaram-Baptiste D, LePrell R, Bolton B (2015) Cyanobacteria and algae blooms: review of health and environmental data from the harmful algal bloom-related illness surveillance system (HABISS) 2007–2011. Toxins 7:1048–1064

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Funding

This project was financially supported by the Research University (RU) project grant (1001/PCCB/870009). Financial support from the Universiti Sains Malaysia research Grant (USM1001/ PBiologi/870039) to A.S.R. Md Sah. was greatly appreciated.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alexander Chong Shu-Chien.

Electronic supplementary material

ESM 1

(PDF 506 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lau, NS., Zarkasi, K.Z., Md Sah, A.S.R. et al. Diversity and Coding Potential of the Microbiota in the Photic and Aphotic Zones of Tropical Man-Made Lake with Intensive Aquaculture Activities: a Case Study on Temengor Lake, Malaysia. Microb Ecol 78, 20–32 (2019). https://doi.org/10.1007/s00248-018-1283-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00248-018-1283-0

Keywords

Navigation