Skip to main content

Advertisement

Log in

Euxinic Freshwater Hypolimnia Promote Bacterial Endemicity in Continental Areas

  • Microbiology of Aquatic Systems
  • Published:
Microbial Ecology Aims and scope Submit manuscript

Abstract

Bacteria and archaea represent the vast majority of biodiversity on Earth. The ways that dynamic ecological and evolutionary processes interact in the microbial world are, however, poorly known. Here, we have explored community patterns of planktonic freshwater bacteria inhabiting stratified lakes with oxic/anoxic interfaces and euxinic (anoxic and sulfurous) water masses. The interface separates a well-oxygenated upper water mass (epilimnion) from a lower anoxic water compartment (hypolimnion). We assessed whether or not the vertical zonation of lakes promoted endemism in deeper layers by analyzing bacterial 16S rRNA gene sequences from the water column of worldwide distributed stratified lakes and applying a community ecology approach. Community similarity based on the phylogenetic relatedness showed that bacterial assemblages from the same water layer were more similar across lakes than to communities from different layer within lakes and that anoxic hypolimnia presented greater β-diversity than oxic epilimnia. Higher β-diversity values are attributable to low dispersal and small connectivity between community patches. In addition, surface waters had significant spatial but non-significant environmental components controlling phylogenetic β-diversity patterns, respectively. Conversely, the bottom layers were significantly correlated with environment but not with geographic distance. Thus, we observed different ecological mechanisms simultaneously acting on the same water body. Overall, bacterial endemicity is probably more common than previously thought, particularly in isolated and environmentally heterogeneous freshwater habitats. We argue for a microbial diversity conservation perspective still lacking in the global and local biodiversity preservation policies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3

Similar content being viewed by others

References

  1. Acinas SG, Klepac-Ceraj V, Hunt DE, Pharino C, Ceraj I, Distel DL, Polz MF (2004) Fine-scale phylogenetic architecture of a complex bacterial community. Nature 430:551–554

    Article  CAS  PubMed  Google Scholar 

  2. Anderson MJ, Ellingsen KE, McArdle BH (2006) Multivariate dispersion as a measure of beta diversity. Ecol Lett 9:683–693

    Article  PubMed  Google Scholar 

  3. Auguet JC, Barberán A, Casamayor EO (2010) Global ecological patterns in uncultured Archaea. ISME J 4:182–190

    Article  PubMed  Google Scholar 

  4. Barberán A, Casamayor EO (2010) Global phylogenetic community structure and beta-diversity patterns of surface bacterioplankton metacommunities. Aquat Microb Ecol 59:1–10

    Article  Google Scholar 

  5. Boucher D, Jardillier L, Debroas D (2006) Succession of bacterial community composition over two consecutive years in two aquatic systems: a natural lake and a lake-reservoir. FEMS Microbiol Ecol 55:79–97

    Google Scholar 

  6. Casamayor EO, Pedrós-Alió C, Muyzer G, Amann R (2002) Microheterogeneity in 16S ribosomal DNA-defined bacterial populations from a stratified planktonic environment is related to temporal changes and to ecological adaptations. Appl Environ Microbiol 68:1706–1714

    Article  CAS  PubMed  Google Scholar 

  7. Casamayor EO, Muyzer G, Pedrós-Alió C (2001) Composition and temporal dynamics of planktonic archaeal assemblages from anaerobic sulfurous environments studied by 16S rDNA denaturing gradient gel electrophoresis and sequencing. Aquat Microb Ecol 25:237–246

    Article  Google Scholar 

  8. Casamayor EO, Schäfer H, Bañeras L, Pedrós-Alió C, Muyzer G (2000) Identification of and spatio-temporal differences between microbial assemblages from two neighboring sulfurous lakes: comparison by microscopy and denaturing gradient gel electrophoresis. Appl Environ Microbiol 66:499–508

    Article  CAS  PubMed  Google Scholar 

  9. Chase JM (2003) Community assembly: when should history matter? Oecologia 136:489–498

    Article  PubMed  Google Scholar 

  10. Clarke KR (1993) Non-parametric multivariate analyses of changes in community structure. Aust Ecol 18:117–143

    Article  Google Scholar 

  11. Coleman ML, Sullivan MB, Martiny AC, Steglich C, Barry K, Delong EF, Chisholm SW (2006) Genomic islands and the ecology and evolution of Prochlorococcus. Science 311:1768–1770

    Article  CAS  PubMed  Google Scholar 

  12. DeSantis TZ, Hugenholtz P, Keller K, Brodie EL, Larsen N, Piceno YM, Phan R, Andersen GL (2006) NAST: a multiple sequence alignment server for comparative analysis of 16S rRNA genes. Nucleic Acids Res 34:W394–W399

    Article  CAS  PubMed  Google Scholar 

  13. De Wever A, Van der Gucht K, Muylaert K, Cousin S, Vyverman W (2008) Clone library analysis reveals an unusual composition and strong habitat partitioning of pelagic bacterial communities in Lake Tanganyika. Aquat Microb Ecol 50:113

    Google Scholar 

  14. Donachie SP, Hou S, Lee KS, Riley CW, Pikina A, Belisle C, Kempe S, Gregory TS, Bossuyt A et al (2004) The Hawaiian Archipelago: a microbial diversity hotspot. Microb Ecol 48:509–520

    Google Scholar 

  15. Faith DP (1992) Conservation evaluation and phylogenetic diversity. Biol Conserv 61:1–10

    Article  Google Scholar 

  16. Finlay BJ (2002) Global dispersal of free-living microbiol eukaryote species. Science 296:1061–1063

    Article  CAS  PubMed  Google Scholar 

  17. Galand PE, Casamayor EO, Kirchman DL, Lovejoy C (2009) Ecology of the rare microbial biosphere of the Arctic Ocean. Proc Natl Acad Sci USA 106:22427–22432

    Article  CAS  PubMed  Google Scholar 

  18. Galand PE, Potvin M, Casamayor EO, Lovejoy C (2010) Hydrography shapes bacterial biogeography of the deep Arctic Ocean. ISME J 4:564–576

    Article  PubMed  Google Scholar 

  19. Glöckner FO, Zaichikov E, Belkova N, Denissova L, Pernthaler J, Pernthaler A, Amann R (2000) Comparative 16S rRNA analysis of lake bacterioplankton reveals globally distributed phylogenetic clusters including an abundant group of actinobacteria. Appl Environ Microbiol 66:5053-5065

    Google Scholar 

  20. Hervàs A, Camarero L, Reche I, Casamayor EO (2009) Viability and potential for immigration of airborne bacteria from Africa that reach high mountain lakes in Europe. Environ Microbiol 11:1612–1623

    Article  PubMed  Google Scholar 

  21. Humayoun SB, Bano N, Hollibaugh JT (2003) Depth distribution of microbial diversity in Mono Lake, a meromictic soda lake in California. Appl Environ Microbiol 69:1030–1042

    Google Scholar 

  22. Hunt DE, David LA, Gevers D, Preheim SP, Alm EJ, Polz MF (2008) Resource partitioning and sympatric differentiation among closely related bacterioplankton. Science 320:1081–1085

    Article  CAS  PubMed  Google Scholar 

  23. Kembel SW, Ackerly DD, Blomberg SP, Cowan PD, Helmus MR, Morlon H, Webb CO (2009) picante: R tools for integrating phylogenies and ecology. R package version 0.7-2. Available at http://picante.r-forge.r-project.org

  24. Koeppel A, Perry EB, Sikorski J, Krizanc D, Warner A, Ward DM, Rooney AP, Brambilla E, Connor N et al (2008) Identifying the fundamental units of bacterial diversity: a paradigm shift to incorporate ecology into bacterial systematics. Proc Natl Acad Sci USA 105:2504–2509

    Article  CAS  PubMed  Google Scholar 

  25. Koizumi Y, Kojima H, Oguri K, Kitazato H, Fukui M (2004) Vertical and temporal shifts in microbial communities in the water column and sediment of saline meromictic Lake Kaiike (Japan), as determined by a 16S rDNA-based analysis, and related to physicochemical gradients. Environ Microbiol 6:622–637

    Google Scholar 

  26. Konopka A, Bercot T, Nakatsu C (1999) Bacterioplankton community diversity in a series of thermally stratified lakes. Microb Ecol 38:126–135

    Article  PubMed  Google Scholar 

  27. Legendre P, Legendre L (1998) Numerical ecology: developments in environmental modeling. Elsevier Science, Amsterdam, 853

    Google Scholar 

  28. Lehours AC, Evans P, Bardot C, Joblin K, Gérard F (2007) Phylogenetic diversity of archaea and bacteria in the anoxic zone of a meromictic lake (Lake Pavin, France). Appl Environ Microbiol 73:2016–2019

    Google Scholar 

  29. Llirós M, Casamayor EO, Borrego CM (2008) High archaeal richness in the water column of a freshwater sulphurous karstic lake along an inter-annual study. FEMS Microbiol Ecol 66:331–342

    Article  PubMed  Google Scholar 

  30. Lozupone C, Knight R (2005) UniFrac: a new phylogenetic method for comparing microbial communities. Appl Environ Microbiol 71:8228–8235

    Article  CAS  PubMed  Google Scholar 

  31. Ludwig W, Strunk O, Westram R, Richter L, Meier H, Yadhukumar Buchner A, Lai T, Steppi S et al (2004) ARB: a software environment for sequence data. Nucleic Acids Res 32:1363–1371

    Article  CAS  PubMed  Google Scholar 

  32. Mallorquí N, Arellano JB, Borrego CM, Garcia-Gil LJ (2005) Signature pigments of green sulfur bacteria in lower Pleistocene deposits from the Banyoles lacustrine area (Spain). J Paleolimnol 34:271–280

    Article  Google Scholar 

  33. Oksanen J, Kindt R, Legendre P, O’hara B, Simpson GL, Stevens MHH (2008). vegan: community ecology package. R package, version 1.11-0. Available at http://cran.r-project.org/, http://vegan.r-forge.r-project.org/

  34. Øvreås L (2000) Population and community level approaches for analysing microbial diversity in natural environments. Ecol Lett 3:236–251

    Article  Google Scholar 

  35. Pedrós-Alió C (2006) Marine microbial diversity: can it be determined? Trends Microbiol 14:257–263

    Article  PubMed  Google Scholar 

  36. Reche I, Pulido-Villena E, Morales-Baquero R, Casamayor EO (2005) Does ecosystem size determine aquatic bacterial richness? Ecology 86:1715–1722

    Article  Google Scholar 

  37. Reche I, Pulido-Villena E, Morales-Baquero R, Casamayor EO (2007) Does ecosystem size determine aquatic bacterial richness? Reply. Ecology 88:253–255

    Article  Google Scholar 

  38. Rosselló-Mora R, Amann R (2001) The species concept for prokaryotes. FEMS Microbiol Rev 25:39–67

    Article  PubMed  Google Scholar 

  39. Shade A, Jones SE, McMahon KD (2008) The influence of habitat heterogeneity on freshwater bacterial composition and dynamics. Environ Microbiol 10:1057–1067

    Article  CAS  PubMed  Google Scholar 

  40. Shaw AK, Halpern AL, Beeson K, Tran B, Venter JC, Martiny JB (2008) It’s all relative: ranking the diversity of aquatic bacterial communities. Environ Microbiol 10:2200–2210

    Article  PubMed  Google Scholar 

  41. Souza V, Espinosa-Asuar L, Escalante AE, Eguiarte LE, Farmer J, Forney L, Lloret L, Rodriguez-Martinez JM, Soberon X, Dirzo R, Elser JJ (2006) An endangered oasis of aquatic microbial biodiversity in the Chihuahuan desert. Proc Natl Acad Sci USA 103:6565–6570

    Article  CAS  PubMed  Google Scholar 

  42. Telford RJ, Vandvik V, Birks HJB (2006) Dispersal limitations matter for microbial morphospecies. Science 312:1015

    Article  CAS  PubMed  Google Scholar 

  43. Urbach E, Vergin KL, Young L, Morse A, Larson GL, Giovannoni SJ (2001) Unusual bacterioplankton community structure in ultra-oligotrophic Crater Lake. Limnol Oceanogr 46:557–572

    Google Scholar 

  44. Whitaker RJ (2006) Allopatric origins of microbial species. Philos Trans R Soc Lond B Biol Sci 361:1975–1984

    Article  PubMed  Google Scholar 

  45. Whitaker RJ, Grogan DW, Taylor JW (2003) Geographic barriers isolate endemic populations of hyperthermophilic Archaea. Science 301:976–978

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We are thankful to authors who provided valuable data for the analysis and to two anonymous reviewers for their constructive comments. This research was supported by grant AERBAC 079/2007 from the Spanish Ministerio de Medio Ambiente (MARM) and grants CONSOLIDER-INGENIO 2010 GRACCIE CSD2007-00067 and PIRENA CGL2009-13318-CO2-01/BOS from the Spanish Ministerio de Ciencia e Innovación (MICINN) to EOC. AB is supported by the Spanish FPU predoctoral scholarship program.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Emilio O. Casamayor.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Barberán, A., Casamayor, E.O. Euxinic Freshwater Hypolimnia Promote Bacterial Endemicity in Continental Areas. Microb Ecol 61, 465–472 (2011). https://doi.org/10.1007/s00248-010-9775-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00248-010-9775-6

Keywords

Navigation