Microbial Ecology

, Volume 74, Issue 1, pp 33–53 | Cite as

Cyanobacterial Contribution to Travertine Deposition in the Hoyoux River System, Belgium

  • Julia Kleinteich
  • Stjepko Golubic
  • Igor S. Pessi
  • David Velázquez
  • Jean-Yves Storme
  • François Darchambeau
  • Alberto V. Borges
  • Philippe Compère
  • Gudrun Radtke
  • Seong-Joo Lee
  • Emmanuelle J. Javaux
  • Annick Wilmotte
Microbiology of Aquatic Systems

Abstract

Travertine deposition is a landscape-forming process, usually building a series of calcareous barriers differentiating the river flow into a series of cascades and ponds. The process of carbonate precipitation is a complex relationship between biogenic and abiotic causative agents, involving adapted microbial assemblages but also requiring high levels of carbonate saturation, spontaneous degassing of carbon dioxide and slightly alkaline pH. We have analysed calcareous crusts and water chemistry from four sampling sites along the Hoyoux River and its Triffoy tributary (Belgium) in winter, spring, summer and autumn 2014. Different surface textures of travertine deposits correlated with particular microenvironments and were influenced by the local water flow. In all microenvironments, we have identified the cyanobacterium Phormidium incrustatum (Nägeli) Gomont as the organism primarily responsible for carbonate precipitation and travertine fabric by combining morphological analysis with molecular sequencing (16S rRNA gene and ITS, the Internal Transcribed Spacer fragments), targeting both field populations and cultures to exclude opportunistic microorganisms responding favourably to culture conditions. Several closely related cyanobacterial strains were cultured; however, only one proved identical with the sequences obtained from the field population by direct PCR. This strain was the dominant primary producer in the calcareous deposits under study and in similar streams in Europe. The dominance of one organism that had a demonstrated association with carbonate precipitation presented a valuable opportunity to study its function in construction, preservation and fossilisation potential of ambient temperature travertine deposits. These relationships were examined using scanning electron microscopy and Raman microspectroscopy.

Keywords

Calcareous tufa Culture support Cyanobacteria rRNA operon sequencing Travertine deposition 

Supplementary material

248_2017_937_MOESM1_ESM.pdf (1.3 mb)
ESM 1(PDF 1313 kb)

References

  1. 1.
    Castenholz RW, Rippka R, Herdman M, Wilmotte A (2001) Subsection III. (Formerly Oscillatoriales Elenkin 1934). In: Garrity GM (ed) Bergey’s manual of systematic bacteriology, 2nd edn. Springer, New York, pp. 539–562Google Scholar
  2. 2.
    Schirrmeister BE, de Vos JM, Antonelli A, Bagheri HC (2013) Evolution of multicellularity coincided with increased diversification of cyanobacteria and the Great Oxidation Event. Proc. Natl. Acad. Sci. 110:1791–1796CrossRefPubMedPubMedCentralGoogle Scholar
  3. 3.
    Hofmann HJ (1976) Precambrian microflora, Belcher Islands, Canada: significance and systematics. J Palaeontol 50:1040–1073Google Scholar
  4. 4.
    Golubic S, Hoffmann HJ (1976) Comparison of modern and mid-Precambrian Entophysalidaceae (Cyanophyta) in stromatolitic algal mats: cell division and degradation. J Palaeontol 50:1074–1082Google Scholar
  5. 5.
    Knoll AH, Golubic S (1992) Proterozoic and living cyanobacteria. In: Schidlowski A (ed) Early organic evolution: implications for mineral and energy resources. Springer, Berlin, pp. 450–462CrossRefGoogle Scholar
  6. 6.
    Tomitani A, Knoll AH, Cavanaugh CM, Ohno T (2006) The evolutionary diversification of cyanobacteria: molecular–phylogenetic and paleontological perspectives. P Natl Acad Sci USA 103:5442–5447CrossRefGoogle Scholar
  7. 7.
    Butterfield NJ (2015) Proterozoic photosynthesis, a critical review. Palaeontology 58:953–972CrossRefGoogle Scholar
  8. 8.
    Walter MR (1976) Stromatolites, Developments in Sedimentology 20. Elsevier, Amsterdam pp. 790Google Scholar
  9. 9.
    Riding R (1991) Classification of microbial carbonates. In: Riding R (ed) Calcareous algae and stromatolites. Springer, Berlin, pp. 21–51CrossRefGoogle Scholar
  10. 10.
    Tewari V, Seckbach J (2011) Stromatolites: interaction of microbes with sediments. Series: Cellular Origin, Life in Extreme Habitats and Astrobiology 18. Springer, Berlin, p. 751Google Scholar
  11. 11.
    Vincent WF (2000) Cyanobacterial dominance in the polar regions. In: Whitton BA, Potts M (eds) The ecology of cyanobacteria. Springer, Dordrecht, pp. 321–340Google Scholar
  12. 12.
    Javaux EJ (2006) Extreme life on past and present Earth, and possibly beyond. Res. Microbiol. 157:37–48CrossRefPubMedGoogle Scholar
  13. 13.
    Brandes M, Albach DC, Vogt JC, Mayland-Quellhors E, Mendieta-Leiva G, Golubic S, Palinska KA (2015) Supratidal extremophiles—cyanobacterial diversity in the rock pools of the Croatian Adria. Microb. Ecol. 70(4):876–888CrossRefPubMedGoogle Scholar
  14. 14.
    Pentecost A (1995) The Quaternary travertine deposits of Europe and Asia Minor. Quaternary Sci Rev 14:1005–1028CrossRefGoogle Scholar
  15. 15.
    Ford TD, Pedley HM (1996) A review of tufa and travertine deposits of the world. Earth-Sci. Rev. 41:117–175CrossRefGoogle Scholar
  16. 16.
    Liu Z, Li Q, Sun H, Liao C, Li H, Wang J, Wu K (2006) Diurnal variations of hydrochemistry in a travertine-depositing stream at Baishuitai, Yunnan, SW China. Aquat. Geochem. 12:103–121CrossRefGoogle Scholar
  17. 17.
    Arp G, Bissett A, Brinkmann N, Cousin S, De Beer D, Friedl T, Mohr KI, Neu TR, Reimer A, Shiraishi F, Stackebrandt E, Zippel B (2010) Tufa-forming biofilms of German karstwater streams: microorganisms, exopolymers, hydrochemistry and calcification. Geol. Soc. Lond., Spec. Publ. 336:83–118CrossRefGoogle Scholar
  18. 18.
    Golubic S (1969) Cyclic and noncyclic mechanisms in the formation of travertine. Verhandlungen des Internationalen Verein Limnologie 1:956–961Google Scholar
  19. 19.
    Golubic S (1964) Beitrag zur Kenntnis der Lichtverhaeltnisse in einigen oligotrophen Seen des Karstes (Light conditions in some oligotrophic lakes of the Karstic region). Carsus Jugoslavicus 4:27–46Google Scholar
  20. 20.
    Golubic S, Violante C, Plenković A, Grgasović T (2008) Travertines and calcareous tufa deposits: an insight into diagenesis. Geologia Croatica 61:363–378Google Scholar
  21. 21.
    Pedley HM (2000) Ambient temperature freshwater microbial tufas. In: Riding RE, Awramik SM (eds) Microbial sediments. Springer, Berlin, pp. 179–186CrossRefGoogle Scholar
  22. 22.
    Burne RV, Moore LS (1987) Microbialites: organosedimentary deposits of benthic microbial communities. PALAIOS 2:241–254CrossRefGoogle Scholar
  23. 23.
    Pentecost A (2005) Travertine. Springer, Berlin, Heidelberg, New York, p. 448Google Scholar
  24. 24.
    Allen D, Suchy M (2001) Geochemical evolution of groundwater on Saturna Island, British Columbia. Can J Earth Sci 38:1059–1080CrossRefGoogle Scholar
  25. 25.
    Pereira S, Zille A, Micheletti E, Moradas-Ferreira P, de Philippis R, Tamagnini P (2009) Complexity of cyanobacterial exopolysaccharides: composition, structures, inducing factors and putative genes involved in their biosynthesis and assembly. FEMS Microbio Rev 33:917–941CrossRefGoogle Scholar
  26. 26.
    De los Ríos A, Ascaso C, Wierzchos J, Fernandez-Valiente E, Quesada A (2004) Microstructural characterization of cyanobacterial mats from the McMurdo Ice Shelf, Antarctica. Appl Environ Microb 70:569–580CrossRefGoogle Scholar
  27. 27.
    Kamennaya N, Ajo-Franklin C, Northen T, Jansson C (2012) Cyanobacteria as biocatalysts for carbonate mineralization. Minerals 2(4):338–364CrossRefGoogle Scholar
  28. 28.
    Dupraz C, Reid R, Braissant O, Decho AW, Norman RS, Visscher P (2009) Processes of carbonate precipitation in modern microbial mats. Earth-Sci. Rev. 96:141–162CrossRefGoogle Scholar
  29. 29.
    Chan C (2004) Microbial polysaccharides template assembly of nanocrystal fibers. Science 303:1656–1658CrossRefPubMedGoogle Scholar
  30. 30.
    Shiraishi F, Reimer A, Bissett A, de Beer D, Arp G (2008) Microbial effects on biofilm calcification, ambient water chemistry and stable isotope records in a highly supersaturated setting (Westerhöfer Bach, Germany). Palaeogeogr Palaeocl 262:91–106CrossRefGoogle Scholar
  31. 31.
    Bartley JK (1996) Actualistic taphonomy of Cyanobacteria: implications for the Precambrian fossil record. PALAIOS 11:571–586CrossRefGoogle Scholar
  32. 32.
    Golubic S, Fischer AG (1975) Ecology of calcareous nodules forming in Little Connestoga Creek near Lancaster, Pennsylvania. Verhandlungen des Internationalen Verein Limnologie 19:2315–2323Google Scholar
  33. 33.
    Golubic S, Violante C, Ferreri V, D’Argenio B (1993) Algal control and early diagenesis in Quaternary travertine formation (Rocchetta a Volturno, Central Apennines). In Barattolo F, De Castro P, Parente M (eds) Studies on fossil benthic algae. Bollettino Società Paleontologica Italiana, Special Volume 1: pp. 231–247.Google Scholar
  34. 34.
    Lepot K, Deremiens L, Namsaraev Z, Compère P, Gérard E, Verleyen E, Tavernier I, Hodgson DA, Wilmotte A, Javaux EJ (2014) Organo-mineral imprints in fossil cyanobacterial mats of an Antarctic lake. Geobiology 12(5):424–450CrossRefPubMedGoogle Scholar
  35. 35.
    Cousin S, Stackebrandt E (2010) Spatial bacterial diversity in a recent freshwater tufa deposit. Geomicrobiology J 27:275–291CrossRefGoogle Scholar
  36. 36.
    Brinkmann N, Hodac L, Mohr KI, Hodacova A, Jahn R, Ramm J, Hallmann C, Arp G, Friedl T (2015) Cyanobacteria and diatoms in biofilms of two karstic streams in Germany and changes of their communities along calcite saturation gradients. Geomicrobiology J 32:255–274CrossRefGoogle Scholar
  37. 37.
    Franco B, Houbrechts G, Van Campehout JE, Hallot E, Petit F (2008) Etude géomorphologique des barrages de travertin du Hoyoux. Bulletin de la Société géographique de Liège 50:45–56Google Scholar
  38. 38.
    Borges AV, Darchambeau F, Teodoru CR, Marwick TR, Tamooh F, Geeraert N, Omengo FO, Guérin F, Lambert T, Morana C, Okuku E, Bouillon S (2015) Globally significant greenhouse gas emissions from African inland waters. Nat. Geosci. 8:637–642CrossRefGoogle Scholar
  39. 39.
    Abril G, Bouillon S, Darchambeau F, Teodoru CR, Marwick TR, Tamooh F, Omengo FO, Geeraert N, Deirmendjian L, Polsenaere P, Borges AV (2015) Technical Note: Large overestimation of pCO2 calculated from pH and alkalinity in acidic, organic-rich freshwaters. Biogeosciences 12(1):67–78CrossRefGoogle Scholar
  40. 40.
    Gran G (1952) Determination of the equivalence point in potentiometric titrations of seawater with hydrochloric acid. Oceanol. Acta 5:209–218Google Scholar
  41. 41.
    Rodier J, Bazin C, Broutin JP, Chambon P, Champsaur H, Rodi L (2005) L'analyse de l'eau: eaux naturelles, eaux résiduaires, eau de mer. Paris. 8th edn, pp. 1381Google Scholar
  42. 42.
    Marshall CP, Javaux EJ, Knoll AH, Walter MR (2005) Combined micro-Fourier transform infrared (FTIR) spectroscopy and micro-Raman spectroscopy of Proterozoic acritarchs: a new approach to palaeobiology. Precambrian Res. 138(3–4):208–224CrossRefGoogle Scholar
  43. 43.
    Storme JY, Golubic S, Wilmotte A, Kleinteich J, Velázquez D, Javaux EJ (2015) Raman characterization of the UV-protective pigment gloeocapsin and its role in the survival of cyanobacteria. Astrobiology 15:843–857CrossRefPubMedGoogle Scholar
  44. 44.
    Stanier RY, Kunisawa R, Mandel M, Cohenbazire G (1971) Purification and properties of unicellular blue-green algae (order Chroococcales). Bacteriol. Rev. 35:171–205PubMedPubMedCentralGoogle Scholar
  45. 45.
    Jungblut AD, Neilan BA (2006) Molecular identification and evolution of the cyclic peptide hepatotoxins, microcystin and nodularin, synthetase genes in three orders of cyanobacteria. Arch. Microbiol. 185:107–114CrossRefPubMedGoogle Scholar
  46. 46.
    Nübel U, Garcia-Pichel F, Muyzer G (1997) PCR primers to amplify 16S rRNA genes from cyanobacteria. Appl Environ Microb 63:3327–3332Google Scholar
  47. 47.
    Taton A, Grubisic S, Brambilla E, Wit D, Wilmotte A (2003) Cyanobacterial diversity in natural and artificial microbial mats of Lake Fryxell (McMurdo Dry Valleys, Antarctica): a morphological and molecular approach. Appl Environ Microb 69:5157–5169CrossRefGoogle Scholar
  48. 48.
    Hall TA (1999) BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucl Acids Symp 41:95–98Google Scholar
  49. 49.
    Tamura K, Stecher G, Peterson D, Filipski A, Kumar S (2013) MEGA6: Molecular Evolutionary Genetics Analysis version 6.0. Mol. Biol. Evol. 30:2725–2729CrossRefPubMedPubMedCentralGoogle Scholar
  50. 50.
    Van de Peer Y, De Wachter R (1997) Evolutionary relationships among the eukaryotic crown taxa taking into account site-to-site rate variation in 18S rRNA. J. Mol. Evol. 45:619–630CrossRefPubMedGoogle Scholar
  51. 51.
    Jukes TH and Cantor CR (1969) Evolution of protein molecules. In Munro HN (ed.) Mammalian protein metabolism. Academic Press, New York and London. Volume III Chapter 24Google Scholar
  52. 52.
    Grossman AR (2003) A molecular understanding of complementary chromatic adaptation. Photosynth. Res. 76:207–215CrossRefPubMedGoogle Scholar
  53. 53.
    Tandeau de Marsac N (1977) Occurrence and nature of chromatic adaptation in cyanobacteria. J. Bacteriol. 130:82–91PubMedPubMedCentralGoogle Scholar
  54. 54.
    Pentecost A (2003) Taxonomic identity, ecology and distribution of the calcite-depositing cyanobacterium Phormidium incrustatum (Oscillatoriaceae). Cryptogamie Algol 24:307–321Google Scholar
  55. 55.
    Bartrons M, Catalan J, Casamayor EO (2012) High bacterial diversity in epilithic biofilms of oligotrophic mountain lakes. Microb. Ecol. 64:860–869CrossRefPubMedGoogle Scholar
  56. 56.
    Hašler P, Dvořak P, Johansen JR, Kitner M, Ondřej V, Pouličkova A (2012) Morphological and molecular study of epipelic filamentous genera Phormidium, Microcoleus and Geitlerinema (Oscillatoriales, Cyanophyta/Cyanobacteria). Fottea 12(2):341–356Google Scholar
  57. 57.
    Golubic S (1973) The relationship between blue-green algae and carbonate deposits. In: Carr N, Whitton BA (eds) The biology of blue-green algae. Blackwell, Oxford, pp. 434–472Google Scholar
  58. 58.
    Herman SH, Lorah MM (1987) CO2 outgassing and calcite precipitation in falling spring creek, Virginia, USA. Chem. Geol. 62:251–262CrossRefGoogle Scholar
  59. 59.
    Suda S, Watanabe MM, Otsuka S, Mahakahant A, Yongmanitchai W, Nopartnaraporn N, Liu Y, Day JG (2002) Taxonomic revision of water bloom–forming species of oscillatorioid cyanobacteria. Int J Syst Evol Micr 52:1577–1595Google Scholar
  60. 60.
    Schneider D, Reimer A, Hahlbrock A, Arp G, Daniel R (2015) Metagenomic and metatranscriptomic analyses of bacterial communities derived from a calcifying karst water creek biofilm and tufa. Geomicrobiol J. 32:316–331CrossRefGoogle Scholar
  61. 61.
    Palińska KA, Abed RMM, Wendt K, Charpy L, Łotocka M, Golubic S (2012) Opportunistic cyanobacteria in benthic microbial mats of a tropical lagoon, Tikehau Atoll, Tuamotu Archipelago: minor in natural populations, major in cultures. Fottea 12:127–140CrossRefGoogle Scholar
  62. 62.
    Richert L, Golubic S, De Le Gue R, Herve A, Payri C (2006) Cyanobacterial populations that build ‘kopara’ microbial mats in Rangiroa, Tuamotu Archipelago, French Polynesia. Europ J Phycol 41:259–279CrossRefGoogle Scholar
  63. 63.
    Engene N, Hyukjae Choi EC, Ellisman MH, Komárek J, Gerwick WH (2012) Moorea producens gen. nov., sp. nov. and Moorea bouillonii comb. nov., tropical marine cyanobacteria rich in bioactive secondary metabolites. Int J Syst Evol Micr 62:1171–1178CrossRefGoogle Scholar
  64. 64.
    Komárek J, Kaštovský J, Mareš J, Johansen JR (2014) Taxonomic classification of cyanoprokaryotes (cyanobacterial genera), using a polyphasic approach. Preslia 86:295–335Google Scholar
  65. 65.
    Merz-Preiss M (2000) Calcification in Cyanobacteria. In: Riding RE, Awramik SM (eds) Microbial sediments. Springer, Berlin, pp. 50–56CrossRefGoogle Scholar
  66. 66.
    Srdoč D, Horvatinčić N, Obelić B, Krajcar-Bronić I, Sliepčević A (1985) Calcite deposition processes in karstwaters with special emphasis on the Plitvice Lakes, Yugoslavia (Croatian w. German and English summary). Krš Jugoslavije (Carsus Iugoslaviae) 11:101–204Google Scholar
  67. 67.
    Berrendero E, Arenas C, Mateo P, Jones B (2016) Cyanobacterial diversity and related sedimentary facies as a function of water flow conditions: example from the Monasterio de Piedra Natural Park (Spain). Sed Geol 337:12–28CrossRefGoogle Scholar
  68. 68.
    Golubic S, Lee S-J, Browne KM (2000) Cyanobacteria: architects of sedimentary structures. In: Riding RE, Awramik (eds) Microbial sediments. Springer, Heidelberg-Berlin-New York, pp. 56–67Google Scholar
  69. 69.
    Le Campion-Alsumard T, Golubic S, Hutchings P (1995) Microbial endoliths in skeletons of live and dead corals: Porites lobata (Moorea, French Polynesia). Mar Ecol-Prog Ser 117:149–157CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2017

Authors and Affiliations

  • Julia Kleinteich
    • 1
    • 2
  • Stjepko Golubic
    • 1
    • 3
    • 4
  • Igor S. Pessi
    • 1
  • David Velázquez
    • 1
    • 5
  • Jean-Yves Storme
    • 4
  • François Darchambeau
    • 6
  • Alberto V. Borges
    • 6
  • Philippe Compère
    • 7
  • Gudrun Radtke
    • 8
  • Seong-Joo Lee
    • 9
  • Emmanuelle J. Javaux
    • 4
  • Annick Wilmotte
    • 1
  1. 1.InBios Center for Protein EngineeringUniversity of LiègeLiègeBelgium
  2. 2.Center for Applied GeosciencesUniversity of TübingenTübingenGermany
  3. 3.Biological Science CenterBoston UniversityBostonUSA
  4. 4.Palaeobiogeology, Palaeobotany, Palaeopalynology, Department of Geology, UR Geology B18University of LiègeLiègeBelgium
  5. 5.Department of BiologyUniversidad Autónoma de MadridMadridSpain
  6. 6.Chemical Oceanography Unit, Institut de Physique (B5)University of LiegeLiègeBelgium
  7. 7.Department of Biology, Ecology and Evolution (BEE)/Centre of Aid for Research and Education in Microscopy (CAREM)University of LiègeLiègeBelgium
  8. 8.Hessisches Landesamt für Naturschutz, Umwelt und GeologieWiesbadenGermany
  9. 9.Department of GeologyKyungpook National UniversityDaeguSouth Korea

Personalised recommendations