Skip to main content
Log in

Effects of Riparian Plant Diversity Loss on Aquatic Microbial Decomposers Become More Pronounced with Increasing Time

  • Microbiology of Aquatic Systems
  • Published:
Microbial Ecology Aims and scope Submit manuscript

Abstract

We examined the potential long-term impacts of riparian plant diversity loss on diversity and activity of aquatic microbial decomposers. Microbial assemblages were obtained in a mixed-forest stream by immersion of mesh bags containing three leaf species (alder, oak and eucalyptus), commonly found in riparian corridors of Iberian streams. Simulation of species loss was done in microcosms by including a set of all leaf species, retrieved from the stream, and non-colonized leaves of three, two or one leaf species. Leaves were renewed every month throughout six months, and microbial inoculum was ensured by a set of colonized leaves from the previous month. Microbial diversity, leaf mass loss and fungal biomass were assessed at the second and sixth months after plant species loss. Molecular diversity of fungi and bacteria, as the total number of operational taxonomic units per leaf diversity treatment, decreased with leaf diversity loss. Fungal biomass tended to decrease linearly with leaf species loss on oak and eucalyptus, suggesting more pronounced effects of leaf diversity on lower quality leaves. Decomposition of alder and eucalyptus leaves was affected by leaf species identity, mainly after longer times following diversity loss. Leaf decomposition of alder decreased when mixed with eucalyptus, while decomposition of eucalyptus decreased in mixtures with oak. Results suggest that the effects of leaf diversity on microbial decomposers depended on leaf species number and also on which species were lost from the system, especially after longer times. This may have implications for the management of riparian forests to maintain stream ecosystem functioning.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Vitousek PM, Mooney HA, Lubchenco J, Melillo JM (1997) Human domination of Earth's ecosystems. Science 277:494–499. doi:10.1126/science.277.5325.494

    Article  CAS  Google Scholar 

  2. Carpenter SR, Stanley EH, Vander Zanden MJ (2011) State of the world's freshwater ecosystems: physical, chemical, and biological changes. Ann Rev Environ Resour 36:75–99. doi:10.1146/annurev-environ-021810-094524

    Article  Google Scholar 

  3. Gessner MO, Gulis V, Kuehn KA, Chauvet E, Suberkropp K (2007) Fungal decomposers of plant litter in aquatic ecosystems. In: Kubicek CP, Druzhinina IS (eds) The Mycota: environmental and microbial relationships, 2nd edn. Springer, Berlin, pp 301–321

    Google Scholar 

  4. Graça MAS, Canhoto C (2006) Leaf litter processing in low order streams. Limnetica 25:1–10

    Google Scholar 

  5. Graça MAS (2001) The role of invertebrates on leaf litter decomposition in streams—a review. Int Rev Hydrobiol 86:383–393. doi:10.1002/1522-2632(200107)86:4/5<383::AID-IROH383>3.0.CO;2-D

    Article  Google Scholar 

  6. Pascoal C, Cássio F (2004) Contribution of fungi and bacteria to leaf litter decomposition in a polluted river. Appl Environ Microbiol 70:5266–5273. doi:10.1128/AEM.70.9.5266-5273.2004

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  7. Pascoal C, Cássio F, Marcotegui A, Sanz B, Gomes P (2005) Role of fungi, bacteria, and invertebrates in leaf litter breakdown in a polluted river. J N Am Benthol Soc 24:784–797. doi:10.1899/05-010.1

    Article  Google Scholar 

  8. Findlay S, Tank J, Dye S, Valett HM, Mulholland PJ, McDowell WH, Johnson SL, Hamilton SK, Edmonds J, Dodds WK, Bowden WB (2002) A cross-system comparison of bacterial and fungal biomass in detritus pools of headwater streams. Microb Ecol 43:55–66. doi:10.1007/s00248-001-1020-x

    Article  CAS  PubMed  Google Scholar 

  9. Dopheide A, Lear G, Stott R, Lewis G (2011) Preferential feeding by the ciliates Chilodonella and Tetrahymena spp. and effects of these Protozoa on bacterial biofilm structure and composition. Appl Environ Microbiol 77:4564–4572. doi:10.1128/aem.02421-10

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  10. Ribblett SG, Palmer MA, Wayne Coats D (2005) The importance of bacterivorous protists in the decomposition of stream leaf litter. Freshw Biol 50:516–526. doi:10.1111/j.1365-2427.2005.01338.x

    Article  Google Scholar 

  11. Risse-Buhl U, Karsubke M, Schlief J, Baschien C, Weitere M, Mutz M (2012) Aquatic protists modulate the microbial activity associated with mineral surfaces and leaf litter. Aquat Microb Ecol 66:133–147. doi:10.3354/ame01564

    Article  Google Scholar 

  12. Pascoal C, Cássio F (2008) Linking fungal diversity to the functioning of freshwater ecosystems. In: Sridhar KR, Bärlocher F, Hyde KD (eds) Novel techniques and ideas in mycology. Fungal Diversity, Hong Kong, pp 1–15

    Google Scholar 

  13. Gessner MO, Swan CM, Dang CK, McKie BG, Bardgett RD, Wall DH, Hättenschwiler S (2010) Diversity meets decomposition. Trends Ecol Evol 25:372–380. doi:10.1016/j.tree.2010.01.010

    Article  PubMed  Google Scholar 

  14. Lecerf A, Dobson M, Dang CK, Chauvet E (2005) Riparian plant species loss alters trophic dynamics in detritus-based stream ecosystems. Oecologia 146:432–442. doi:10.1007/s00442-005-0212-3

    Article  PubMed  Google Scholar 

  15. Duarte S, Pascoal C, Cássio F, Bärlocher F (2006) Aquatic hyphomycete diversity and identity affect leaf litter decomposition in microcosms. Oecologia 147:658–666. doi:10.1007/s00442-005-0300-4

    Article  PubMed  Google Scholar 

  16. Bärlocher F, Corkum M (2003) Nutrient enrichment overwhelms diversity effects in leaf decomposition by stream fungi. Oikos 101:247–252. doi:10.1034/j.1600-0706.2003.12372.x

    Article  Google Scholar 

  17. Fernandes I, Pascoal C, Cássio F (2011) Intraspecific traits change biodiversity effects on ecosystem functioning under metal stress. Oecologia 166:1019–1028. doi:10.1007/s00442-011-1930-3

    Article  PubMed  Google Scholar 

  18. Reiss J, Bailey RA, Cássio F, Woodward G, Pascoal C (2010) Assessing the contribution of micro-organisms and macrofauna to biodiversity-ecosystem functioning relationships in freshwater microcosms. Adv Ecol Evol 43:151–176. doi:10.1016/B978-0-12-385005-8.00004-6

    Google Scholar 

  19. Jonsson M, Malmqvist B (2000) Ecosystem process rate increases with animal species richness: evidence from leaf-eating, aquatic insects. Oikos 89:519–523. doi:10.1034/j.1600-0706.2000.890311

    Article  Google Scholar 

  20. Jonsson M, Malmqvist B, Hoffsten P-O (2001) Leaf litter breakdown rates in boreal streams: does shredder species richness matter? Freshw Biol 46:161–171. doi:10.1046/j.1365-2427.2001.00655.x

    Article  Google Scholar 

  21. Laitung B, Chauvet E (2005) Vegetation diversity increases species richness of leaf-decaying fungal communities in woodland streams. Arch Hydrobiol 164:217–235. doi:10.1127/0003-9136/2005/0164-0217

    Article  Google Scholar 

  22. Kominoski JS, Pringle CM, Ball BA, Bradford MA, Coleman DC, Hall DB, Hunter MD (2007) Nonadditive effects of leaf litter species diversity on breakdown dynamics in a detritus-based stream. Ecology 88:1167–1176. doi:10.1890/06-0674

    Article  CAS  PubMed  Google Scholar 

  23. Kominoski JS, Hoellein TJ, Kelly JJ, Pringle CM (2009) Does mixing litter of different qualities alter stream microbial diversity and functioning on individual litter species? Oikos 118:457–463. doi:10.1111/j.1600-0706.2008.17222.x

    Article  Google Scholar 

  24. Gessner MO (1997) Fungal biomass, production and sporulation associated with particulate organic matter in streams. Limnetica 13:33–44

    Google Scholar 

  25. Graça MAS, Pozo J, Canhoto C, Elosegi A (2002) Effects of Eucalyptus plantations on detritus, decomposers, and detritivores in streams. Sci World J 2:1173–1185. doi:10.1100/tsw.2002.193

    Article  Google Scholar 

  26. Gessner MO (2005) Ergosterol as measure of fungal biomass. In: Graça MAS, Bärlocher F, Gessner MO (eds) Methods to study litter decomposition: a practical guide. Springer, Dordrecht, pp 189–195

    Chapter  Google Scholar 

  27. Duarte S, Pascoal C, Alves A, Correia A, Cássio F (2010) Assessing the dynamic of microbial communities during leaf decomposition in a low-order stream by microscopic and molecular techniques. Microbiol Res 165:351–362. doi:10.1016/j.micres.2009.06.002

    Article  CAS  PubMed  Google Scholar 

  28. Dopheide A, Lear G, Stott R, Lewis G (2008) Molecular characterization of ciliate diversity in stream biofilms. Appl Environ Microbiol 74:1740–1747. doi:10.1128/aem.01438-07

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  29. Legendre P, Legendre L (1998) Numerical ecology. Developments in environmental modelling, 2nd edn. Elsevier Science BV, Amsterdam

    Google Scholar 

  30. Zar JH (2009) Biostatistical analysis. Prentice-Hall, Englewood-Cliffs

    Google Scholar 

  31. Mille-Lindblom C, Tranvik LJ (2003) Antagonism between bacteria and fungi on decomposing aquatic plant litter. Microb Ecol 45:173–182. doi:10.1007/s00248-002-2030-z

    Article  CAS  PubMed  Google Scholar 

  32. Bärlocher F (1992) The ecology of aquatic hyphomycetes. Springer, Berlin

    Book  Google Scholar 

  33. Mille-Lindblom C, Fischer H, Tranvik LJ (2006) Antagonism between bacteria and fungi: substrate competition and a possible tradeoff between fungal growth and tolerance towards bacteria. Oikos 113:233–242. doi:10.1111/j.2006.0030-1299.14337.x

    Article  Google Scholar 

  34. Bärlocher F, Graça MAS (2002) Exotic riparian vegetation lowers fungal diversity but not leaf decomposition in Portuguese streams. Freshw Biol 47:1123–1135. doi:10.1046/j.1365-2427.2002.00836.x

    Article  Google Scholar 

  35. Tilman D (2000) Causes, consequences and ethics of biodiversity. Nat Geosci 405:208–211. doi:10.1038/35012217

    CAS  Google Scholar 

  36. Swan CM, Palmer MA (2004) Leaf diversity alters litter breakdown in a Piedmont stream. J N Am Benthol Soc 23:15–28. doi:10.1899/0887-3593(2004)023<0015:LDALBI>2.0.CO;2

    Article  Google Scholar 

  37. Swan CM, Palmer MA (2006) Composition of speciose leaf litter alters stream detritivore growth, feeding activity and leaf breakdown. Oecologia 147:469–478. doi:10.1007/s00442-005-0297-8

    Article  PubMed  Google Scholar 

  38. Lecerf A, Risnoveanu G, Popescu C, Gessner MO, Chauvet E (2007) Decomposition of diverse litter mixtures in streams. Ecology 88:219–227. doi:10.1890/0012-9658(2007)88[219:DODLMI]2.0.CO;2

    Article  PubMed  Google Scholar 

  39. Lecerf A, Chauvet E (2008) Intraspecific variability in leaf traits strongly affects alder leaf decomposition in a stream. Basic Appl Ecol 9:598–605. doi:10.1016/j.baae.2007.11.003

    Article  Google Scholar 

  40. Fernandes I, Pascoal C, Guimarães H, Pinto R, Sousa I, Cássio F (2012) Higher temperature reduces the effects of litter quality on decomposition by aquatic fungi. Freshw Biol 57:2306–2317. doi:10.1111/fwb.12004

    Article  Google Scholar 

  41. Schindler MH, Gessner MO (2009) Functional leaf traits and biodiversity effects on litter decomposition in a stream. Ecology 90:1641–1649. doi:10.1890/08-1597.1

    Article  PubMed  Google Scholar 

  42. Canhoto C, Graça MAS (1999) Leaf barriers to fungal colonization and shredders (Tipula lateralis) consumption of decomposing Eucalyptus globulus. Microb Ecol 37:163–172. doi:10.1007/s002489900140

    Article  PubMed  Google Scholar 

  43. Duarte S, Fidalgo ML, Pascoal C, Cássio F (2012) The role of the freshwater shrimp Atyaephyra desmarestii in leaf litter breakdown in streams. Hydrobiologia 680:149–157. doi:10.1007/s10750-011-0912-0

    Article  Google Scholar 

  44. Graça MAS, Cressa C, Gessner MO, Feio MJ, Callies KA, Barrios C (2001) Food quality, feeding preferences, survival and growth of shredders from temperate and tropical streams. Freshw Biol 46:947–957. doi:10.1046/j.1365-2427.2001.00729.x

    Article  Google Scholar 

  45. Kominoski JS, Rosemond AD (2012) Conservation from the bottom up: forecasting effects of global change on dynamics of organic matter and management needs for river networks. Freshw Sci 31:51–68. doi:10.1899/10-160.1

    Article  Google Scholar 

Download references

Acknowledgments

FEDER-POFC-COMPETE and the Portuguese Foundation for Science and Technology supported this study (PEst-C/BIA/UI4050/2011, PTDC/AAC-AMB/113746/2009 and PTDC/AAC-AMB/117068/2010), S. Duarte (SFRH/BPD/47574/2008) and I. Fernandes (SFRH/BD/42215/2007).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Cláudia Pascoal.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fernandes, I., Duarte, S., Cássio, F. et al. Effects of Riparian Plant Diversity Loss on Aquatic Microbial Decomposers Become More Pronounced with Increasing Time. Microb Ecol 66, 763–772 (2013). https://doi.org/10.1007/s00248-013-0278-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00248-013-0278-0

Keywords

Navigation