Skip to main content

Advertisement

Log in

Impacts of Mariculture on the Diversity of Bacterial Communities within Intertidal Sediments in the Northeast of China

  • Environmental Microbiology
  • Published:
Microbial Ecology Aims and scope Submit manuscript

Abstract

Mariculture is one of the major seafood supplies worldwide and has caused serious environmental concerns on the coastal zone. Its rapid development has been shown to disrupt the sediment ecosystems and thus influence the benthic bacterial communities. Bacterial diversity and community structure within both adjacent farms and non-cultured zones intertidal sediments along the coasts of Qinhuangdao and Dalian, China, were investigated using full-length 16S rRNA gene-based T-RFLP analyses and clone library construction. Richness and Shannon–Wiener index were significantly increased at sites adjacent the mariculture farm with mean values of 29 and 2.97 from peak profiles of T-RFLP result. Clustering analyses suggested that impacts of mariculture on bacterial diversity of sediment were significantly larger than those resulted from temporal and spatial scales. Upon comparisons of RFLP patterns from 602 clones from libraries of the selected five samples, 137 OTUs were retrieved. Members of γ- and δ-Proteobacteria, Bacilli, Flavobacteria, and Actinobacteria were recorded in all libraries. In addition, γ-Proteobacteria were dominant in all samples (21.7~45.0 %). Redundancy analysis revealed that the distribution of bacterial composition seemed to be determined by the variables of salinity, PO4 3−-P, NH4 +-N, and Chlorophyll a content. The phyla of γ-Proteobacteria, Clostridia, Flavobacteria, Bacilli, and Planctomycetes were principal components to contribute to the bacterial differences of clone libraries. Our finding demonstrated that these phyla could display variations of bacterial composition linked to environmental disturbance resulted from mariculture.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Brugère C, Ridler NB (2004) Global aquaculture outlook in the next decades: an analysis of national aquaculture production forecasts 2030. FAO Fisheries & Aquaculture Publications Web. http://www.fao.org/fishery/publications/2004/. Accessed 10 June 2012

  2. Grigorakis K, Rigos G (2011) Aquaculture effects on environmental and public welfare—the case of Mediterranean mariculture. Chemosphere 855:899–919

    Article  Google Scholar 

  3. Curro P, Maccarrone V (2010) Aquaculture in Sicily: ecological and economic aspects. In: Green DR (ed) Coastal and marine geospatial technologies. Springer, Dordrecht, pp 117–127

    Chapter  Google Scholar 

  4. Van der Gucht K, Cottenie K, Muylaert K, Vloemans N, Cousin S, Declerck S, Jeppesen E, Conde-Porcuna J-M, Schwenk K, Zwart G, Degans H, Vyverman W, De Meester L (2007) The power of species sorting: local factors drive bacterial community composition over a wide range of spatial scales. Proc Natl Acad Sci U S A 104:20404–20409

    Article  PubMed Central  PubMed  Google Scholar 

  5. Langenheder S, Ragnarsson H (2007) The role of environmental and spatial factors for the composition of aquatic bacterial communities. Ecology 88:2154–2161

    Article  PubMed  Google Scholar 

  6. Johnston EL, Roberts DA (2009) Contaminants reduce the richness and evenness of marine communities: a review and meta-analysis. Environ Pollut 157:1745–1752

    Article  CAS  PubMed  Google Scholar 

  7. Paerl HW, Dyble J, Moisander PH, Noble RT, Piehler MF, Pinckney JL, Steppe TF, Twomey L, Valdes LM (2003) Microbial indicators of aquatic ecosystem change: current applications to eutrophication studies. FEMS Microbiol Ecol 46:233–246

    Article  CAS  PubMed  Google Scholar 

  8. Sørensen KB, Glazer B, Hannides A, Gaidos E (2007) Spatial structure of the microbial community in sandy carbonate sediment. Mar Ecol Prog Ser 346:61–74

    Article  Google Scholar 

  9. Schäfer H, Bernard L, Courties C, Lebaron P, Servais P, Pukall R, Stackebrandt E, Troussellier M, Guindulain T, Vives-Rego J, Muyzer G (2001) Microbial community dynamics in Mediterranean nutrient-enriched seawater mesocosms: changes in the genetic diversity of bacterial populations. FEMS Microbiol Ecol 34:243–253

    Article  PubMed  Google Scholar 

  10. Orcutt BN, Joye SB, Kleindienst S, Knittel K, Ramette A, Reitz A, Samarkin V, Treude T, Boetius A (2010) Impact of natural oil and higher hydrocarbons on microbial diversity, distribution, and activity in Gulf of Mexico cold-seep sediments. Deep Sea Res II Top Stud Oceanogr 57:2008–2021

    Article  CAS  Google Scholar 

  11. Saul DJ, Aislabie JM, Brown CE, Harris L, Foght JM (2005) Hydrocarbon contamination changes the bacterial diversity of soil from around Scott Base, Antarctica. FEMS Microbiol Ecol 53:141–155

    Article  CAS  PubMed  Google Scholar 

  12. Païssé S, Goñi-Urriza M, Coulon F, Duran R (2010) How a bacterial community originating from a contaminated coastal sediment responds to an oil input. Microb Ecol 60:394–405

    Article  PubMed  Google Scholar 

  13. Tian Y, Liu H, Zheng T, Kwon K, Kim S, Yan C (2008) PAHs contamination and bacterial communities in mangrove surface sediments of the Jiulong River Estuary, China. Mar Pollut Bull 57:707–715

    Article  CAS  PubMed  Google Scholar 

  14. Jing H, Liu H, Wong T, Chen M (2010) Impact of mesozooplankton grazing on the microbial community revealed by denaturing gradient gel electrophoresis (DGGE). J Exp Mar Biol Ecol 383:39–47

    Article  CAS  Google Scholar 

  15. Rooney-Varga JN, Giewat MW, Savin MC, Sood S, LeGresley M, Martin JL (2005) Links between phytoplankton and bacterial community dynamics in a coastal marine environment. Microb Ecol 49:163–175

    Article  CAS  PubMed  Google Scholar 

  16. Tang KW, Turk V, Grossart HP (2010) Linkage between crustacean zooplankton and aquatic bacteria. Aquat Microb Ecol 61:261–277

    Article  Google Scholar 

  17. Aguiló-Ferretjans MM, Bosch R, Martín-Cardona C, Lalucat J, Nogales B (2008) Phylogenetic analysis of the composition of bacterial communities in human-exploited coastal environments from Mallorca Island (Spain). Syst Appl Microbiol 31:231–240

    Article  PubMed  Google Scholar 

  18. Bernhard AE, Marshall D, Yiannos L (2012) Increased variability of microbial communities in restored salt marshes nearly 30 years after tidal flow restoration. Estuar Coast 35:1049–1059

    Article  CAS  Google Scholar 

  19. Yeung CW, Woo M, Lee K, Greer CW (2011) Characterization of the bacterial community structure of Sydney Tar Ponds sediment. Can J Microbiol 57:493–503

    Article  CAS  PubMed  Google Scholar 

  20. Xu M, Wu WM, Wu L, He Z, Van Nostrand JD, Deng Y, Luo J, Carley J, Ginder-Vogel M, Gentry TJ (2010) Responses of microbial community functional structures to pilot-scale uranium in situ bioremediation. ISME J 4:1060–1070

    Article  PubMed  Google Scholar 

  21. Ma Y, Wang L, Qian L (2008) Community structure of β-proteobacterial ammonia-oxidizing bacteria in prawn farm sediment. Prog Nat Sci 18:679–684

    Article  Google Scholar 

  22. McCaig AE, Phillips CJ, Stephen JR, Kowalchuk GA, Harvey SM, Herbert RA, Embley TM, Prosser JI (1999) Nitrogen cycling and community structure of proteobacterial β-subgroup ammonia-oxidizing bacteria within polluted marine fish farm sediments. Appl Environ Microbiol 65:213–220

    PubMed Central  CAS  PubMed  Google Scholar 

  23. Shao P, Chen Y, Zhou H, Qu L, Ma Y, Li H, Jiao N (2004) Phylogenetic diversity of archaea in prawn farm sediment. Mar Biol 146:133–142

    Article  CAS  Google Scholar 

  24. Kunihiro T, Miyazaki T, Uramoto Y, Kinoshita K, Inoue A, Tamaki S, Hama D, Tsutsumi H, Ohwada K (2008) The succession of microbial community in the organic rich fish-farm sediment during bioremediation by introducing artificially mass-cultured colonies of a small polychaete, Capitella sp. I. Mar Pollut Bull 57:68–77

    Article  CAS  PubMed  Google Scholar 

  25. Yoza BA, Harada RM, Nihous GC, Li QX, Masutani SM (2007) Impact of mariculture on microbial diversity in sediments near open ocean farming of Polydactylus sexfilis. Ecol Indic 7:108–122

    Article  Google Scholar 

  26. Bissett A, Bowman J, Burke C (2006) Bacterial diversity in organically-enriched fish farm sediments. FEMS Microbiol Ecol 55:48–56

    Article  CAS  PubMed  Google Scholar 

  27. Castine SA, Bourne DG, Trott LA, McKinnon DA (2009) Sediment microbial community analysis: establishing impacts of aquaculture on a tropical mangrove ecosystem. Aquaculture 297:91–98

    Article  Google Scholar 

  28. Decho AW (2000) Microbial biofilms in intertidal systems: an overview. Cont Shelf Res 20:1257–1273

    Article  Google Scholar 

  29. Bostock J, McAndrew B, Richards R, Jauncey K, Telfer T, Lorenzen K, Little D, Ross L, Handisyde N, Gatward I, Corner R (2010) Aquaculture: global status and trends. Philos Trans R Soc Lond B Biol Sci 365:2897–2912

    Article  PubMed Central  PubMed  Google Scholar 

  30. Holmer M (2010) Environmental issues of fish farming in offshore waters: perspectives, concerns and research needs. Aquacult Environ Interact 1:57–70

    Article  Google Scholar 

  31. Pinckney JL, Paerl HW, Tester P, Richardson TL (2001) The role of nutrient loading and eutrophication in estuarine ecology. Environ Health Perspect 109:699–706

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  32. Tamminen M, Karkman A, Corander J, Paulin L, Virta M (2011) Differences in bacterial community composition in Baltic Sea sediment in response to fish farming. Aquaculture 313:15–23

    Article  Google Scholar 

  33. Li X, Yuan D, Sun J (2009) Simulation of water exchange in Bohai Bay. In: Zhang C, Tang H (eds) Advances in water resources and hydraulic engineering. Proceedings of 16th IAHR-APD Congress and 3rd Symposium of IAHR-ISHS. International Association for Hydro-Environment Engineering and Research, Nanjing, pp 1341–1346

  34. Zhang P, Song J, Yuan H (2009) Persistent organic pollutant residues in the sediments and mollusks from the Bohai Sea coastal areas, North China: an overview. Environ Int 35:632–646

    Article  CAS  PubMed  Google Scholar 

  35. Holm-Hansen O, Lorenzen CJ, Holmes RW, Strickland JDH (1965) Fluorometric determination of chlorophyll. ICES J Mar Sci 30:3–15

    Article  CAS  Google Scholar 

  36. Adair KL, Schwartz E (2008) Evidence that ammonia-oxidizing archaea are more abundant than ammonia-oxidizing bacteria in semiarid soils of northern Arizona, USA. Microb Ecol 56:420–426

    Article  CAS  PubMed  Google Scholar 

  37. Dymock D, Weightman A, Scully C, Wade W (1996) Molecular analysis of microflora associated with dentoalveolar abscesses. J Clin Microbiol 34:537–542

    PubMed Central  CAS  PubMed  Google Scholar 

  38. Zhang W, Ki JS, Qian PY (2008) Microbial diversity in polluted harbor sediments I: bacterial community assessment based on four clone libraries of 16S rDNA. Estuarine Coastal Shelf Sci 76:668–681

    Article  Google Scholar 

  39. Culman SW, Bukowski R, Gauch HG, Cadillo-Quiroz H, Buckley DH (2009) T-REX: software for the processing and analysis of T-RFLP data. BMC Bioinforma 10:171–180

    Article  Google Scholar 

  40. Edmonds JW, Weston NB, Joye SB, Mou X, Moran MA (2009) Microbial community response to seawater amendment in low-salinity tidal sediments. Microb Ecol 58:558–568

    Article  PubMed  Google Scholar 

  41. Wang Q, Garrity GM, Tiedje JM, Cole JR (2007) Naïve Bayesian classifier for rapid assignment of rRNA sequences into the new bacterial taxonomy. Appl Environ Microbiol 73:5261–5267

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  42. Good IJ (1953) The population frequencies of species and the estimation of population parameters. Biometrika 40:237–264

    Article  Google Scholar 

  43. Schauer R, Bienhold C, Ramette A, Harder J (2010) Bacterial diversity and biogeography in deep-sea surface sediments of the South Atlantic Ocean. ISME J 4:159–170

    Article  CAS  PubMed  Google Scholar 

  44. Cristani M, Naccari C, Nostro A, Pizzimenti A, Trombetta D, Pizzimenti F (2012) Possible use of Serratia marcescens in toxic metal biosorption (removal). Environ Sci Pollut Res Int 19:161–168

    Article  CAS  PubMed  Google Scholar 

  45. Dunbar J, Ticknor LO, Kuske CR (2000) Assessment of microbial diversity in four southwestern United States soils by 16S rRNA gene terminal restriction fragment analysis. Appl Environ Microbiol 66:2943–2950

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  46. Sahan E, Muyzer G (2008) Diversity and spatio-temporal distribution of ammonia-oxidizing Archaea and Bacteria in sediments of the Westerschelde estuary. FEMS Microbiol Ecol 64:175–186

    Article  CAS  PubMed  Google Scholar 

  47. Polymenakou PN, Bertilsson S, Tselepides A, Stephanou EG (2005) Bacterial community composition in different sediments from the Eastern Mediterranean Sea: a comparison of four 16S ribosomal DNA clone libraries. Microb Ecol 50:447–462

    Article  CAS  PubMed  Google Scholar 

  48. Song H, Li Z, Du B, Wang G, Ding Y (2012) Bacterial communities in sediments of the shallow Lake Dongping in China. J Appl Microbiol 112:79–89

    Article  CAS  PubMed  Google Scholar 

  49. Dang H, Li J, Chen R, Wang L, Guo L, Zhang Z, Klotz MG (2010) Diversity, abundance, and spatial distribution of sediment ammonia-oxidizing Betaproteobacteria in response to environmental gradients and coastal eutrophication in Jiaozhou Bay, China. Appl Environ Microbiol 76:4691–4702

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  50. Cetecioğlu Z, Ince BK, Kolukirik M, Ince O (2009) Biogeographical distribution and diversity of bacterial and archaeal communities within highly polluted anoxic marine sediments from the marmara sea. Mar Pollut Bull 58:384–395

    Article  PubMed  Google Scholar 

  51. Dang H, Zhang X, Sun J, Li T, Zhang Z, Yang G (2008) Diversity and spatial distribution of sediment ammonia-oxidizing crenarchaeota in response to estuarine and environmental gradients in the Changjiang Estuary and East China Sea. Microbiology 154:2084–2095

    Article  CAS  PubMed  Google Scholar 

  52. Böer SI, Hedtkamp SI, van Beusekom JE, Fuhrman JA, Boetius A, Ramette A (2009) Time- and sediment depth-related variations in bacterial diversity and community structure in subtidal sands. ISME J 3:780–791

    Article  PubMed  Google Scholar 

  53. Feng YY, Hou LC, Ping NX, Ling TD, Kyo CI (2004) Development of mariculture and its impacts in Chinese coastal waters. Rev Fish Biol Fish 14:1–10

    Article  Google Scholar 

  54. Mantzavrakos E, Kornaros M, Lyberatos G, Kaspiris P (2007) Impacts of a marine fish farm in Argolikos Gulf (Greece) on the water column and the sediment. Desalination 210:110–124

    Article  CAS  Google Scholar 

  55. Schütte U, Abdo Z, Bent S, Shyu C, Williams C, Pierson J, Forney L (2008) Advances in the use of terminal restriction fragment length polymorphism (T-RFLP) analysis of 16s rRNA genes to characterize microbial communities. Appl Microbiol Biotechnol 80:365–380

    Article  PubMed  Google Scholar 

  56. Navarro N, Leakey RJG, Black KD (2008) Effect of salmon cage aquaculture on the pelagic environment of temperate coastal waters: seasonal changes in nutrients and microbial community. Mar Ecol Prog Ser 361:47–58

    Article  CAS  Google Scholar 

  57. Thiyagarajan V, Tsoi MMY, Zhang W, Qian PY (2010) Temporal variation of coastal surface sediment bacterial communities along an environmental pollution gradient. Mar Environ Res 70:56–64

    Article  CAS  PubMed  Google Scholar 

  58. Wilhelm SW, Farnsley SE, LeCleir GR, Layton AC, Satchwell MF, DeBruyn JM, Boyer GL, Zhu G, Paerl HW (2011) The relationships between nutrients, cyanobacterial toxins and the microbial community in Taihu (Lake Tai), China. Harmful Algae 10:207–215

    Article  CAS  Google Scholar 

  59. Herbeck JT, Degnan PH, Wernegreen JJ (2005) Nonhomogeneous model of sequence evolution indicates independent origins of primary endosymbionts within the Enterobacteriales (γ-Proteobacteria). Mol Biol Evol 22:520–532

    Article  CAS  PubMed  Google Scholar 

  60. Feng BW, Li XR, Wang JH, Hu ZY, Meng H, Xiang LY, Quan ZX (2009) Bacterial diversity of water and sediment in the Changjiang estuary and coastal area of the East China Sea. FEMS Microbiol Ecol 70:236–248

    Article  CAS  Google Scholar 

  61. Alonso C, Warnecke F, Amann R, Pernthaler J (2007) High local and global diversity of Flavobacteria in marine plankton. Environ Microbiol 9:1253–1266

    Article  CAS  PubMed  Google Scholar 

  62. Bowman JP, McCammon SA, Dann AL (2005) Biogeographic and quantitative analyses of abundant uncultivated γ-proteobacterial clades from marine sediment. Microb Ecol 49:451–460

    Article  CAS  PubMed  Google Scholar 

  63. Zhuang WQ, Tay JH, Maszenan AM, Tay STL (2002) Bacillus naphthovorans sp. nov. from oil-contaminated tropical marine sediments and its role in naphthalene biodegradation. Appl Microbiol Biotechnol 58:547–554

    Article  CAS  PubMed  Google Scholar 

  64. Kawahara N, Shigematsu K, Miyadai T, Kondo R (2009) Comparison of bacterial communities in fish farm sediments along an organic enrichment gradient. Aquaculture 287:107–113

    Article  CAS  Google Scholar 

  65. Gómez-Pereira PR, Fuchs BM, Alonso C, Oliver MJ, van Beusekom JEE, Amann R (2010) Distinct flavobacterial communities in contrasting water masses of the North Atlantic Ocean. ISME J 4:472–487

    Article  PubMed  Google Scholar 

  66. Pollet T, Tadonléké RD, Humbert JF (2011) Spatiotemporal changes in the structure and composition of a less-abundant bacterial phylum (Planctomycetes) in two perialpine lakes. Appl Environ Microbiol 77:4811–4821

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  67. Schauer R, Bienhold C, Ramette A, Harder J (2009) Bacterial diversity and biogeography in deep-sea surface sediments of the South Atlantic Ocean. ISME J 4:159–170

    Article  PubMed  Google Scholar 

  68. Shade A, Read JS, Welkie DG, Kratz TK, Wu CH, McMahon KD (2011) Resistance, resilience and recovery: aquatic bacterial dynamics after water column disturbance. Environ Microbiol 13:2752–2767

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The authors would like to thank Zhonghua Wang, Lixue Wen, and Chunjuan Yuan for their technical assistance. This research work was financially supported by grants from the National Natural Science Foundation of China 41106100 and the CAS/SAFEA International Partnership Program for Creative Research Teams “Representative environmental processes and resources effects in coastal zone.”

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Song Qin or Guangyi Wang.

Electronic supplementary material

Below is the link to the electronic supplementary material.

MOESM 1 (DOCX 1600 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Li, J., Li, F., Yu, S. et al. Impacts of Mariculture on the Diversity of Bacterial Communities within Intertidal Sediments in the Northeast of China. Microb Ecol 66, 861–870 (2013). https://doi.org/10.1007/s00248-013-0272-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00248-013-0272-6

Keywords

Navigation