Skip to main content
Log in

The Ammonia Oxidizing and Denitrifying Prokaryotes Associated with Sponges from Different Sea Areas

  • Invertebrate Microbiology
  • Published:
Microbial Ecology Aims and scope Submit manuscript

Abstract

Marine sponges have been suggested to play an important role in the marine nitrogen cycling. However, the role of sponge microbes in the nitrogen transformation remains limited, especially on the bacterial ammonia oxidization and denitrification. Hence, in the present study, using functional genes (amoA, nirS, nirK, and nxrA) involved in ammonia oxidization and denitrification and 16S rRNA genes for specific bacterial groups as markers, phylogenetically diverse prokaryotes including bacteria and archaea, which may be involved in the ammonia oxidization and denitrification processes in sponges, were revealed in seven sponge species. Ammonia oxidizers were found in all species, whereas three sponges (Placospongia sp., Acanthella sp., and Pericharax heteroraphis) harbor only ammonia-oxidizing bacteria (AOB), two sponges (Spirastrellidae diplastrella and Mycale fibrexilis) host only ammonia-oxidizing archaea (AOA), while the remaining two sponges (Haliclona sp. and Lamellomorpha sp.) harbor both AOB and AOA. S. diplastrella and Lamellomorpha sp. also harbor denitrifying bacteria. Nitrite reductase gene nirK was detected only in Lamellomorpha sp. with higher phylogenetic diversity than nirS gene observed only in S. diplastrella. The detected functional genes related to the ammonia oxidization and nitrite reduction in deep-sea and shallow-water sponges highlighted the potential ecological roles of prokaryotes in sponge-related nitrogen transformation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Bayer K, Schmitt S, Hentschel U (2008) Physiology, phylogeny and in situ evidence for bacterial and archaeal nitrifiers in the marine sponge Aplysina aerophoba. Environ Microbiol 10:2942–2955

    Article  PubMed  CAS  Google Scholar 

  2. Braker G, Zhou J, Wu L, Devol AH, Tiedje JM (2000) Nitrite reductases genes (nirK and nirS) as functional markers to investigate diversity of denitrification bacteria in Pacific Northwest marine sediment communities. Appl Environ Microb 66:2096–2104

    Article  CAS  Google Scholar 

  3. Christopher A, Francis KJR, Michael J, Brian BO (2005) Ubiquity and diversity of ammonia-oxidizing archaea in water columns and sediments of the ocean. Proc Natl Acad Sci U S A 102:14683–14688

    Article  Google Scholar 

  4. Codispoti LA, Brandes JA, Christensen JP, Devol AH, Naqvi SWA, Paerl HW et al (2001) The oceanic fixed nitrogen and nitrous oxide budgets: moving targets as we enter the anthropocene? Sci Mar 65:85–105

    Article  CAS  Google Scholar 

  5. Di HJ, Cameron KC, Shen JP, Winefield CS, O'Callaghan M, Bowatte S et al (2009) Nitrification driven by bacteria and not archaea in nitrogen-rich grassland soils. Nat Geosci 2:621–624

    Article  CAS  Google Scholar 

  6. Diaz MC, Ward BB (1997) Sponge-mediated nitrification in tropical benthic communities. Mar Ecol Prog Ser 156:97–107

    Article  CAS  Google Scholar 

  7. Diaz MC, Akob D, Cary CS (2004) Denaturing gradient gel electrophoresis of nitrifying microbes associated with tropical sponges. In: Pansini M, Pronzato R, Baverstrello G, Manconi R (eds) Sponge science in the new millennium. Boll Mus 1st Biol Univ Genova 68:279–289

  8. Degrange V, Bardin R (1995) Detection and counting of Nitrobacter populations in soil by PCR. Appl Environ Microb 61:2093–2098

    CAS  Google Scholar 

  9. Fiore CL, Jarett JK, Olson ND, Lesser MP (2010) Nitrogen fixation and nitrogen transformations in marine symbioses. Trends Microbiol 18:455–463

    Article  PubMed  CAS  Google Scholar 

  10. Gao Z, Li B, Zheng C, Wang G (2008) Molecular detection of fungal communities in the Hawaiian marine sponges Subertes zeteki and Mycale armata. Appl Environ Microb 74:6091–6101

    Article  CAS  Google Scholar 

  11. Han M, He L, Lin H, Li Z (2012) Bacterial and archaeal symbionts in the South China Sea sponge Phakellia fusca: community structure, relative abundance, and ammonia-oxidizing populations. Mar Biotechnol 14:701–713

    Article  PubMed  CAS  Google Scholar 

  12. Hentschel U, Hopke J, Horn M, Friedrich AB, Wagner M, Kacker J et al (2002) Molecular evidence for a uniform microbial community in sponges from different oceans. Appl Environ Microb 68:4431–4440

    Article  CAS  Google Scholar 

  13. Heylen K, Gevers D, Vanparys B, Wittebolle L, Geets J, Boon N et al (2006) The incidence of nirS and nirK and their genetic heterogeneity in cultivated denitrifiers. Environ Microbiol 8:2012–2021

    Article  PubMed  CAS  Google Scholar 

  14. Hoffmann F, Radax R, Woebken D, Holtappels M, Lavik G, Rapp HT et al (2009) Complex nitrogen cycling in the sponge Geodia barretti. Environ Microbiol 11:2228–2243

    Article  PubMed  CAS  Google Scholar 

  15. Holmes BM, Blanch HW (2006) Genus-specific associations of marine sponges with group I creanarchaeotes. Mar Biol 150:759–772

    Article  Google Scholar 

  16. Jiménez E (2007) Sponge as a source of dissolved inorganic nitrogen: nitrification mediated by temperate sponges. Limnol Oceanogr 52:948–958

    Article  Google Scholar 

  17. Kober KM, Nichols SA (2007) On the phylogenetic relationships of hadromerid and poecilosclerid sponges. J Mar Biol Assoc UK 87:1585–1598

    Article  CAS  Google Scholar 

  18. Lee OO, Wang Y, Yang JK, Lafi F, Al-Suwailem A (2011) Pyrosequencing reveals highly diverse and species-specific microbial communities in sponges from the Red Sea. ISME J 5:650–664

    Article  PubMed  CAS  Google Scholar 

  19. López-Legentil S, Erwin PM, Pawlik JR, Song B (2010) Effects of sponge bleaching on ammonia-oxidizing archaea: distribution and relative expression of ammonia monooxygenase genes associated with the Barrel sponge Xestospngia muta. Microb Ecol 60:561–571

    Article  PubMed  Google Scholar 

  20. Meyer B, Kuever J (2008) Phylogenetic diversity and spatial distribution of the microbial community associated with the Caribbean deep-water sponge Polymastia cf. corticata by 16S rRNA, aprA, and amoA gene analysis. Microb Ecol 56:306–321

  21. Mohamed NM, Saito K, Tal Y, Hill RT (2010) Diversity of aerobic and anaerobic ammonia-oxidizing bacteria in marine sponges. ISME J 4:38–48

    Article  PubMed  CAS  Google Scholar 

  22. Mohamed NM, Colman AS, Tal Y, Hill RT (2008) Diversity and expression of nitrogen fixation genes in bacterial symbionts of marine sponges. Environ Microbiol 10:2910–2921

    Article  PubMed  CAS  Google Scholar 

  23. Poly F, Wertz S, Brothier E, Degrange V (2008) First exploration of Nitrobacter diversity in soils using functional gene nxrA encoding nitrite oxido-reductase. FEMS Microbiol Ecol 63:132–140

    Article  PubMed  CAS  Google Scholar 

  24. Rotthauwe JH, Witzel KP, Liesack W (1997) The ammonia monooxygenase structural gene amoA as a functional marker: molecular fine-scale analysis of natural ammonia-oxidizing populations. Appl Environ Microb 63:4704–4712

    Google Scholar 

  25. Schläppy M, Schöttner SI, Lavik G, Kuypers MMM, de Beer D, Hoffmann F (2010) Evidence of nitrification and denitrification in high and low microbial abundance sponges. Mar Biol 157:593–602

    Article  Google Scholar 

  26. Schläppy M, Weber M, Mendola D, Hoffmann F, de Beer D (2010) Heterogeneous oxygenation resulting from active and passive flow in two Mediterranean sponges, Dysidea avara and Chondrosia reniformis. Limnol Oceanogr 55:1289–1300

    Article  Google Scholar 

  27. Schloss PD, Handelsman J (2005) Introducing DOTUR, a computer program for defining operational taxonomic units and estimating species richness. Appl Environ Microb 71:1501–1506

    Article  CAS  Google Scholar 

  28. Schmid MC, Maas B, Dapena A, van de Pas-Schoonen K, van de Vossenberg J, Kartal B et al (2005) Biomarkers for in situ detection of anaerobic ammonium-oxidizing (anammox) bacteria. Appl Environ Microb 71:1677–1684

    Article  CAS  Google Scholar 

  29. Schmitt S, Tsai P, Bell J, Fromont J, Ilan M, Lindquist N et al (2012) Assessing the complex sponge microbiota: core, variable and species-specific bacterial communities in marine sponges. ISME J 6:564–576

    Article  PubMed  CAS  Google Scholar 

  30. Siegl A, Kamke J, Hochmuth T, Piel J, Richter M, Liang C et al (2011) Single-cell genomics reveals the lifestyle of Poribacteria, a candidate phylum symbiotically associated with marine sponges. ISME J 5:61–70

    Article  PubMed  Google Scholar 

  31. Smedile F, Messina E, La Cono V, Tsoy O, Monticelli L et al (2012) Metagenomic analysis of hadopelagic microbial assemblages thriving at the deepest part of Mediterranean Sea, Matapan-Vavilov Deep. Environ Microbiol. doi:10.1111/j.1462-2920.2012.02827.x

  32. Southwell MW, Popp BN, Martens CS (2008) Nitrification controls on fluxes and isotopic composition of nitrate from Florida Keys sponges. Mar Chem 108:96–108

    Article  CAS  Google Scholar 

  33. Steger D, Ettinger-Epstein P, Whalan S, Hentschel U, de Nys R et al (2008) Diversity and mode of transmission of ammonia-oxidizing archaea in marine sponges. Environ Microbiol 10:1087–1094

    Article  PubMed  CAS  Google Scholar 

  34. Tamura K, Dudley J, Nei M, Kumar S (2007) MEGA4: molecular evolutionary genetics analysis (MEGA) software version 4.0. Mol Biol Evol 24:1596–1599

    Article  PubMed  CAS  Google Scholar 

  35. Taylor MW, Radax R, Steger D, Wagner M (2007) Sponge-associated microorganisms: evolution, ecology, and biotechnological potential. Microbiol Mol Biol R 71:295–347

    Article  CAS  Google Scholar 

  36. Webster N, Taylor MW (2012) Marine sponges and their microbial symbionts: love and other relationships. Environ Microbiol 14:335–346

    Article  PubMed  CAS  Google Scholar 

  37. Webster NS, Taylor MW, Behnam F, Lücker S, Rattei T et al (2010) Deep sequencing reveals exceptional diversity and modes of transmission for bacterial sponge symbionts. Environ Microbiol 12:2070–2082

    PubMed  CAS  Google Scholar 

  38. Wilkinson CR, Summons R, Evans E (1999) Nitrogen fixation in symbiotic marine sponges: ecological significance and difficulties in detection. Mem Queensl Mus 44:667–673

    Google Scholar 

  39. Wilkinson CR, Fay P (1979) Nitrogen fixation in coral reef sponges with symbiotic cyanobacteria. Nature 279:527–529

    Article  CAS  Google Scholar 

  40. Wuchter C, Abbas B, Coolen MJ, Herndl GJ, Middelburg JJ et al (2006) Archaea nitrification in the ocean. Proc Natl Acad Sci U S A 103:12317–12322

    Article  PubMed  CAS  Google Scholar 

  41. Yang Z, Li Z (2012) Spatial distribution of prokaryotic symbionts and ammoxidation, denitrifier bacteria in marine sponge Astrosclera willeyana. Sci Rep 2:528

    PubMed  CAS  Google Scholar 

  42. Zehr JP, Kudela RM (2011) Nitrogen cycle of the open ocean: from genes to ecosystems. Annu Rev Mar Sci 3:197–225

    Article  Google Scholar 

  43. Zumft WG (1997) Cell biology and molecular basis denitrification. Microbiol Mol Biol R 61:533–616

    CAS  Google Scholar 

Download references

Acknowledgments

Financial support from National Natural Science Foundation of China (41076077) is greatly acknowledged. The authors are grateful to Prof. Houwen Lin and Prof. Wen Zhang at Second Military Medical University (China) for assistance in collecting sponge samples and Liming He in identifying sponge samples.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhiyong Li.

Electronic Supplementary Material

Below is the link to the electronic supplementary material.

ESM 1

(DOC 278 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Han, M., Li, Z. & Zhang, F. The Ammonia Oxidizing and Denitrifying Prokaryotes Associated with Sponges from Different Sea Areas. Microb Ecol 66, 427–436 (2013). https://doi.org/10.1007/s00248-013-0197-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00248-013-0197-0

Keywords

Navigation