Skip to main content
Log in

Comparison of Soil Bacterial Communities of Pinus patula of Nilgiris, Western Ghats with Other Biogeographically Distant Pine Forest Clone Libraries

  • Soil Microbiology
  • Published:
Microbial Ecology Aims and scope Submit manuscript

Abstract

The bacterial community structure of the rhizosphere and non-rhizosphere soil of Pinus patula, found in the Nilgiris region of Western Ghats, was studied by constructing 16S rRNA gene clone libraries. In the rhizosphere and non-rhizosphere soil clone libraries constructed, 13 and 15 bacterial phyla were identified, respectively. The clone libraries showed the predominance of members of culturally underrepresented phyla like Acidobacteria and Verrucomicrobia. The Alphaproteobacteria and Acidobacteria clones were predominant in rhizosphere and non-rhizosphere soil samples, respectively. In rhizosphere, amongst Alphaproteobacteria members, Bradyrhizobium formed the significant proportion, whereas in non-rhizosphere, members of subdivision-6 of phylum Acidobacteria were abundant. The diversity analysis of P. patula soil libraries showed that the phylotypes (16S rRNA gene similarity cutoff, ≥97 %) of Acidobacteria and Bacteroidetes were relatively predominant and diverse followed by Alphaproteobacteria and Verrucomicrobia. The diversity indices estimated higher richness and abundance of bacteria in P. patula soil clone libraries than the pine forest clone libraries retrieved from previous studies. The tools like principal co-ordinate analysis and Jackknife cluster analysis, which were under UniFrac analysis indicated that variations in soil bacterial communities were attributed to their respective geographical locations due to the phylogenetic divergence amongst the clone libraries. Overall, the P. patula rhizosphere and non-rhizosphere clone libraries were found significantly unique in composition, evenly distributed and highly rich in phylotypes, amongst the biogeographically distant clone libraries. It was finally hypothesised that the phylogenetic divergence amongst the bacterial phylotypes and natural selection plays a pivotal role in the variations of bacterial communities across the geographical distance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Reference

  1. Daniels RJR (1996) The Nilgiri Biosphere Reserve: a review of conservation status with recommendations for a holistic approach to management: India. Working paper no. 16, UNESCO (South-South Cooperation Programme), Paris, France

  2. Pranesh MB (2005) Sustainable development of hill area tea cultivation. Gyan Books, New Delhi

    Google Scholar 

  3. Shi JY, Yuan XF, Lin HR, Yang YQ, Li ZY (2011) Differences in soil properties and bacterial communities between the rhizosphere and bulk soil and among different production areas of the medicinal plant Fritillaria thunbergii. Int J Mol Sci 12:3770–3785

    Article  PubMed  CAS  Google Scholar 

  4. Gahoonia TS, Nielsen NE (1991) A method to study rhizosphere processes in thin soil layers of different proximity to roots. Plant Soil 135:143–146

    Article  Google Scholar 

  5. Steer J, Harris JA (2000) Shifts in the microbial community in rhizosphere and non-rhizosphere soils during the growth of Agrostis stolonifera. Soil Biol Biochem 32:869–878

    Article  CAS  Google Scholar 

  6. Kandeler E, Marschner P, Tscherko D, Gahoonia TS, Nielsen NE (2002) Microbial community composition and functional diversity in the rhizosphere of Maize. Plant Soil 238:301–312

    Article  CAS  Google Scholar 

  7. Staley JT, Konopka A (1985) Measurement of in situ activities of nonphotosynthetic microorganisms in aquatic and terrestrial habitats. Annu Rev Microbiol 39:321–346

    Article  PubMed  CAS  Google Scholar 

  8. Amann RI, Ludwig W, Schleifer KH (1995) Phylogenetic identification and in situ detection of individual microbial cells without cultivation. Microbiol Rev 59:143–169

    PubMed  CAS  Google Scholar 

  9. Muyzer G, Smalla K (1998) Application of denaturing gradient gel electrophoresis (DGGE) and temperature gradient gel electrophoresis (TGGE) in microbial ecology. Anton Leeuw Int J G 73:127–141

    Article  CAS  Google Scholar 

  10. Tiedje JM, Asuming-Brempong S, Nüsslein K, Marsh TL, Flynn SJ (1999) Opening the black box of soil microbial diversity. Appl Soil Ecol 13:109–122

    Article  Google Scholar 

  11. von Wintzingerode F, Gobel UB, Stackebrandt E (1997) Determination of microbial diversity in environmental samples: pitfalls of PCR-based rRNA analysis. FEMS Microbiol Rev 21:213–229

    Article  Google Scholar 

  12. Hugenholtz P, Goebel BM, Pace NR (1998) Impact of culture-independent studies on the emerging phylogenetic view of bacterial diversity. J Bacteriol 180:4765–4774

    PubMed  CAS  Google Scholar 

  13. Zhou J, Xia B, Huang H, Palumbo AV, Tiedje JM (2004) Microbial diversity and heterogeneity in sandy subsurface soils. Appl Environ Microbiol 70:1723–1734

    Article  PubMed  CAS  Google Scholar 

  14. Janssen PH (2006) Identifying the dominant soil bacterial taxa in libraries of 16S rRNA and 16S rRNA genes. Appl Environ Microbiol 72:1719–1728

    Article  PubMed  CAS  Google Scholar 

  15. Fierer N, Bradford MA, Jackson RB (2007) Toward an ecological classification of soil bacteria. Ecology 88:1354–1364

    Article  PubMed  Google Scholar 

  16. Kielak A, Pijl AS, van Veen JA, Kowalchuk GA (2008) Differences in vegetation composition and plant species identity lead to only minor changes in soil-borne microbial communities in a former arable field. FEMS Microbiol Ecol 63:372–382

    Article  PubMed  CAS  Google Scholar 

  17. Bürgmann H, Meier S, Bunge M, Widmer F, Zeyer J (2005) Effects of model root exudates on structure and activity of a soil diazotroph community. Environ Microbiol 7:1711–1724

    Article  PubMed  Google Scholar 

  18. Upchurch R, Chiu C-Y, Everett K, Dyszynski G, Coleman DC, Whitman WB (2008) Differences in the composition and diversity of bacterial communities from agricultural and forest soils. Soil Biol Biochem 40:1294–1305

    Article  CAS  Google Scholar 

  19. Berg G, Smalla K (2009) Plant species and soil type cooperatively shape the structure and function of microbial communities in the rhizosphere. FEMS Microbiol Ecol 68:1–13

    Article  PubMed  CAS  Google Scholar 

  20. Raaijmakers JM, Paulitz TC, Steinberg C, Alabouvette C, Moënne-Loccoz Y (2009) The rhizosphere: a playground and battlefield for soilborne pathogens and beneficial microorganisms. Plant Soil 321:341–361

    Article  CAS  Google Scholar 

  21. Chow ML, Radomski CC, McDermott JM, Davies J, Axelrood PE (2002) Molecular characterization of bacterial diversity in Lodgepole pine (Pinus contorta) rhizosphere soils from British Columbia forest soils differing in disturbance and geographic source. FEMS Microbiol Ecol 42:347–357

    Article  PubMed  CAS  Google Scholar 

  22. Lauber CL, Strickland MS, Bradford MA, Fierer N (2008) The influence of soil properties on the structure of bacterial and fungal communities across land-use types. Soil Biol Biochem 40:2407–2415

    Article  CAS  Google Scholar 

  23. Shah V, Shah S, Kambhampati MS, Ambrose J, Smith N, Dowd SE, McDonnell KT, Panigrahi B, Green T (2011) Bacterial and archaea community present in the Pine Barrens Forest of Long Island, NY: unusually high percentage of ammonia oxidizing bacteria. PLoS One 6:e26263

    Article  PubMed  CAS  Google Scholar 

  24. Dunbar J, Takala S, Barns SM, Davis JA, Kuske CR (1999) Levels of bacterial community diversity in four arid soils compared by cultivation and 16S rRNA gene cloning. Appl Environ Microbiol 65:1662–1669

    PubMed  CAS  Google Scholar 

  25. Nie M, Meng H, Li K, Wan JR, Quan ZX, Fang CM, Chen JK, Li B (2012) Comparison of bacterial and fungal communities between natural and planted pine forests in subtropical China. Curr Microbiol 64:34–42

    Article  PubMed  CAS  Google Scholar 

  26. Fierer N, Jackson RB (2006) The diversity and biogeography of soil bacterial communities. Proc Natl Acad Sci USA 103:626–631

    Article  PubMed  CAS  Google Scholar 

  27. Roesch LF, Fulthorpe RR, Riva A, Casella G, Hadwin AK, Kent AD, Daroub SH, Camargo FA, Farmerie WG, Triplett EW (2007) Pyrosequencing enumerates and contrasts soil microbial diversity. ISME J 1:283–290

    PubMed  CAS  Google Scholar 

  28. Fulthorpe RR, Roesch LF, Riva A, Triplett EW (2008) Distantly sampled soils carry few species in common. ISME J 2:901–910

    Article  PubMed  CAS  Google Scholar 

  29. Kuske CR, Barns SM, Busch JD (1997) Diverse uncultivated bacterial groups from soils of the arid Southwestern United States that are present in many geographic regions. Appl Environ Microbiol 63:3614–3621

    PubMed  CAS  Google Scholar 

  30. Walkley A, Black IA (1934) An examination of the Degtijariff method for determining soil organic matter and a proposed modification of the chromic acid titration method. Soil Sci 37:29–38

    Article  CAS  Google Scholar 

  31. Jackson ML (1973) Soil chemical analysis. Prentice-Hall, New Delhi

    Google Scholar 

  32. Subbiah BV, Asija GL (1956) A rapid procedure for the determination of available nitrogen in soils. Curr Sci 25:259–260

    CAS  Google Scholar 

  33. Richards LA (1954) Diagnosis and improvement of saline-alkali soils. In: US Department of Agriculture Handbook, vol 60. USDA, Beltsville

  34. Muyzer G, de Waal EC, Uitterlinden AG (1993) Profiling of complex microbial populations by denaturing gradient gel electrophoresis analysis of polymerase chain reaction-amplified genes coding for 16S rRNA. Appl Environ Microbiol 59:695–700

    PubMed  CAS  Google Scholar 

  35. Sambrook J, Russell DW (2001) Molecular cloning: a laboratory manual, vol 2. Cold Spring Harbor Laboratory Press, Cold Spring Harbor

    Google Scholar 

  36. Wang Q, Garrity GM, Tiedje JM, Cole JR (2007) Naive Bayesian classifier for rapid assignment of rRNA sequences into the new bacterial taxonomy. Appl Environ Microbiol 73:5261–5267

    Article  PubMed  CAS  Google Scholar 

  37. Huber T, Faulkner G, Hugenholtz P (2004) Bellerophon: a program to detect chimeric sequences in multiple sequence alignments. Bioinformatics 20:2317–2319

    Article  PubMed  CAS  Google Scholar 

  38. Dunbar J, Barns SM, Ticknor LO, Kuske CR (2002) Empirical and theoretical bacterial diversity in four Arizona soils. Appl Environ Microbiol 68:3035–3045

    Article  PubMed  CAS  Google Scholar 

  39. Rosselló-Mora R, Amann R (2001) The species concept for prokaryotes. FEMS Microbiol Rev 25:39–67

    Article  PubMed  Google Scholar 

  40. Schloss PD, Westcott SL, Ryabin T, Hall JR, Hartmann M, Hollister EB, Lesniewski RA, Oakley BB, Parks DH, Robinson CJ, Sahl JW, Stres B, Thallinger GG, Van Horn DJ, Weber CF (2009) Introducing mothur: open-source, platform-independent, community-supported software for describing and comparing microbial communities. Appl Environ Microbiol 75:7537–7541

    Article  PubMed  CAS  Google Scholar 

  41. Colwell RK, Mao CX, Chang J (2004) Interpolating, extrapolating and comparing incidence-based species accumulation curves. Ecology 85:2717–2727

    Article  Google Scholar 

  42. Chao A, Hwang WH, Chen YC, Kuo CY (2000) Estimating the number of shared species in two communities. Stat Sinica 10:227–246

    Google Scholar 

  43. Chazdon RL, Colwell RK, Denslow JS, Guariguata MR (1998) Statistical methods for estimating species richness of woody regeneration in primary and secondary rain forests of Northeastern Costa Rica. In: Forest biodiversity research, monitoring and modeling: conceptual background and old world case studies. Man and the Biosphere Series. pp 285–309

  44. Chao A (1984) Nonparametric estimation of the number of classes in a population. Scand J Stat 11:265–270

    Google Scholar 

  45. Hayek LAC, Buzas MA (1997) Surveying natural populations. Columbia University Press, New York

    Google Scholar 

  46. Magurran AE (1988) Ecological diversity and its measurement. Croom Helm, London

    Book  Google Scholar 

  47. Magurran AE (2005) Measuring biological diversity. Blackwell, Oxford

    Google Scholar 

  48. Singleton DR, Furlong MA, Rathbun SL, Whitman WB (2001) Quantitative comparisons of 16S rRNA gene sequence libraries from environmental samples. Appl Environ Microbiol 67:4374–4376

    Article  PubMed  CAS  Google Scholar 

  49. DeSantis TZ Jr, Hugenholtz P, Keller K, Brodie EL, Larsen N, Piceno YM, Phan R, Andersen GL (2006) NAST: a multiple sequence alignment server for comparative analysis of 16S rRNA genes. Nucleic Acids Res 34:W394–W399

    Article  PubMed  CAS  Google Scholar 

  50. Ludwig W, Strunk O, Westram R, Richter L, Meier H, Yadhukumar BA, Lai T, Steppi S, Jobb G, Forster W, Brettske I, Gerber S, Ginhart AW, Gross O, Grumann S, Hermann S, Jost R, Konig A, Liss T, Lussmann R, May M, Nonhoff B, Reichel B, Strehlow R, Stamatakis A, Stuckmann N, Vilbig A, Lenke M, Ludwig T, Bode A, Schleifer KH (2004) ARB: a software environment for sequence data. Nucleic Acids Res 32:1363–1371

    Article  PubMed  CAS  Google Scholar 

  51. Lozupone C, Knight R (2005) UniFrac: a new phylogenetic method for comparing microbial communities. Appl Environ Microbiol 71:8228–8235

    Article  PubMed  CAS  Google Scholar 

  52. Buckley DH, Schmidt TM (2001) Environmental factors influencing the distribution of rRNA from Verrucomicrobia in soil. FEMS Microbiol Ecol 35:105–112

    Article  PubMed  CAS  Google Scholar 

  53. Chatfield C, Collins AJ (1980) Introduction to multivariate analysis. Chapman and Hall, New York

    Google Scholar 

  54. Liu Z, Lozupone C, Hamady M, Bushman FD, Knight R (2007) Short pyrosequencing reads suffice for accurate microbial community analysis. Nucleic Acids Res 35:e120

    Article  PubMed  Google Scholar 

  55. He J, Xu Z, Hughes J (2006) Molecular bacterial diversity of a forest soil under residue management regimes in subtropical Australia. FEMS Microbiol Ecol 55:38–47

    Article  PubMed  CAS  Google Scholar 

  56. Grayston SJ, Wang S, Campbell CD, Edwards AC (1998) Selective influence of plant species on microbial diversity in the rhizosphere. Soil Biol Biochem 30:369–378

    Article  CAS  Google Scholar 

  57. Ormeño-Orrillo E, Rogel-Hernández M, Lloret L, López-López A, Martínez J, Barois I, Martínez-Romero E (2011) Change in land use alters the diversity and composition of Bradyrhizobium communities and led to the introduction of Rhizobium etli into the tropical rain forest of Los Tuxtlas (Mexico). Microb Ecol 63:1–13

    Article  Google Scholar 

  58. Palaniappan P, Chauhan PS, Saravanan VS, Anandham R, Sa T (2010) Isolation and characterization of plant growth promoting endophytic bacterial isolates from root nodule of Lespedeza sp. Biol Fertil Soils 46:807–816

    Article  Google Scholar 

  59. Spain AM, Krumholz LR, Elshahed MS (2009) Abundance, composition, diversity and novelty of soil Proteobacteria. ISME J 3:992–1000

    Article  PubMed  CAS  Google Scholar 

  60. Kielak A, Pijl AS, van Veen JA, Kowalchuk GA (2009) Phylogenetic diversity of Acidobacteria in a former agricultural soil. ISME J 3:378–382

    Article  PubMed  CAS  Google Scholar 

  61. Sanguin H, Remenant B, Dechesne A, Thioulouse J, Vogel TM, Nesme X, Moënne-Loccoz Y, Grundmann GL (2006) Potential of a 16S rRNA-based taxonomic microarray for analyzing the rhizosphere effects of maize on Agrobacterium spp. and bacterial communities. Appl Environ Microbiol 72:4302–4312

    Article  PubMed  CAS  Google Scholar 

  62. Hansel CM, Fendorf S, Jardine PM, Francis CA (2008) Changes in bacterial and archaeal community structure and functional diversity along a geochemically variable soil profile. Appl Environ Microbiol 74:1620–1633

    Article  PubMed  CAS  Google Scholar 

  63. Anderson M, Habiger J (2012) Characterization and identification of productivity-associated rhizobacteria in wheat. Appl Environ Microbiol 78:4434–4446

    Article  PubMed  CAS  Google Scholar 

  64. Bernardet J-F, Bowman J (2006) The genus Flavobacterium. In: Dworkin M, Falkow S, Rosenberg E, Schleifer K-H, Stackebrandt E (eds) The prokaryotes: an evolving electronic resource for the microbiological community, vol 7, 3rd edn. Springer, New York, pp 481–531

    Google Scholar 

  65. Chin KJ, Liesack W, Janssen PH (2001) Opitutus terrae gen. nov., sp. nov., to accommodate novel strains of the division ‘Verrucomicrobia’ isolated from rice paddy soil. Int J Syst Evol Microbiol 51:1965–1968

    Article  PubMed  CAS  Google Scholar 

  66. Kemp PF, Aller JY (2004) Bacterial diversity in aquatic and other environments: what 16S rDNA libraries can tell us. FEMS Microbiol Ecol 47:161–177

    Article  PubMed  CAS  Google Scholar 

  67. Schmalenberger A, Schwieger F, Tebbe CC (2001) Effect of primers hybridizing to different evolutionarily conserved regions of the small-subunit rRNA gene in PCR-based microbial community analyses and genetic profiling. Appl Environ Microbiol 67:3557–3563

    Article  PubMed  CAS  Google Scholar 

  68. Smalla K, Wieland G, Buchner A, Zock A, Parzy J, Kaiser S, Roskot N, Heuer H, Berg G (2001) Bulk and rhizosphere soil bacterial communities studied by denaturing gradient gel electrophoresis: plant-dependent enrichment and seasonal shifts revealed. Appl Environ Microbiol 67:4742–4751

    Article  PubMed  CAS  Google Scholar 

  69. Wieland G, Neumann R, Backhaus H (2001) Variation of microbial communities in soil, rhizosphere, and rhizoplane in response to crop species, soil type, and crop development. Appl Environ Microbiol 67:5849–5854

    Article  PubMed  CAS  Google Scholar 

  70. Araujo JF, de Castro AP, Costa MM, Togawa RC, Júnior GJ, Quirino BF, Bustamante MM, Williamson L, Handelsman J, Krüger RH (2012) Characterization of soil bacterial assemblies in Brazilian Savanna-like vegetation reveals Acidobacteria dominance. Microb Ecol 64:760–770

    Article  PubMed  CAS  Google Scholar 

  71. Singh BK, Munro S, Potts JM, Millard P (2007) Influence of grass species and soil type on rhizosphere microbial community structure in grassland soils. Appl Soil Ecol 36:147–155

    Article  Google Scholar 

  72. Hanson CA, Fuhrman JA, Horner-Devine MC, Martiny JBH (2012) Beyond biogeographic patterns: processes shaping the microbial landscape. Nat Rev Microbiol 10:497–506

    PubMed  CAS  Google Scholar 

  73. Ramette A, Tiedje JM (2007) Biogeography: an emerging cornerstone for understanding prokaryotic diversity, ecology, and evolution. Microb Ecol 53:197–207

    Article  PubMed  Google Scholar 

  74. Green J, Bohannan BJ (2006) Spatial scaling of microbial biodiversity. Trends Ecol Evol 21:501–507

    Article  PubMed  Google Scholar 

  75. Jenkins DG, Medley KA, Franklin RB (2011) Microbes as a test of biogeographic principles. In: Fontaneto D (ed) Biogeography of microscopic organisms: is everything small everywhere? Cambridge University Press, Cambridge, pp 309–323

    Chapter  Google Scholar 

Download references

Acknowledgements

M.R.K. likes to thank University Grants Commission (UGC), India, for awarding the Rajiv Gandhi National Fellowship (F.14-2(ST)/2008 SA(III)). The authors acknowledge Dr. N. Chandrasekaran and Dr. Amitava Mukherjee, for their critical suggestions and constant encouragement for this work. The authors also thank VIT Management for facilitating this research work. And finally, the authors would like to thank the anonymous reviewers for their critical comments to improve this manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jabez W. Osborne.

Electronic Supplementary Material

Below is the link to the electronic supplementary material.

ESM 1

(XLS 23 kb)

ESM 2

(XLS 36 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rohini-Kumar, M., Osborne, J.W. & Saravanan, V.S. Comparison of Soil Bacterial Communities of Pinus patula of Nilgiris, Western Ghats with Other Biogeographically Distant Pine Forest Clone Libraries. Microb Ecol 66, 132–144 (2013). https://doi.org/10.1007/s00248-012-0167-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00248-012-0167-y

Keywords

Navigation