Skip to main content
Log in

Does the Reproductive Strategy Affect the Transmission and Genetic Diversity of Bionts in Cyanolichens? A Case Study Using Two Closely Related Species

  • Host Microbe Interactions
  • Published:
Microbial Ecology Aims and scope Submit manuscript

Abstract

Observed levels of population genetic diversity are often associated with differences in species dispersal and reproductive strategies. In symbiotic organisms, the genetic diversity level of each biont should also be highly influenced by biont transmission. In this study, we evaluated the influence of the reproductive strategies of cyanolichen species on the current levels of population genetic diversity of bionts. To eliminate any phylogenetic noise, we selected two closely related species within the genus Degelia, which only differ in their reproductive systems. We sampled all known populations of both species in central Spain and genotyped the fungal and cyanobacterial components of lichen samples using DNA sequences as molecular markers. We applied population genetics approaches to evaluate the genetic diversity and population genetic structure of the symbiotic components of both lichen species. Our results indicate that fungal and cyanobiont genetic diversity is highly influenced by the reproductive systems of lichen fungus. We detected higher bionts genetic diversity values in the sexual species Degelia plumbea. By contrast, the levels of fungal and cyanobiont genetic diversity in the asexual species Degelia atlantica were extremely low (almost clonal), and the species shows a high specificity towards its cyanobiont. Our results indicate that reproduction by vegetative propagules, in species of the genus Degelia, favors vertical transmission and clonality, which affects the species’ capacity for resources and competition, thereby limiting the species to restricted niches.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Aanen DK, Ros VID, de Fine-Licht HH, Mitchell J, de Beer Z, Slippers B, Rouland-LeFèvre C, Boomsma JJ (2007) Patterns of interaction specificity of fungus-growing termites and Termitomyces symbionts in South Africa. BMC Evol Biol 7:115. doi:10.1186/1471-2148-7-115

    Article  PubMed  Google Scholar 

  2. Ahmadjian V (1993) The lichen symbiosis. Wiley, New York

    Google Scholar 

  3. Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ (1990) Basic local alignment search tool. J Mol Biol 215:403–410

    PubMed  CAS  Google Scholar 

  4. Altermann S (2009) Geographic structure in a symbiotic mutualism. PhD Dissertation, Ecology and Evolutionary Biology University of California Santa Cruz

  5. Bandelt HJ, Forster P, Röhl A (1999) Median-joining networks for inferring intraspecific phylogenies. Mol Biol Evol 16:37–48

    Article  PubMed  CAS  Google Scholar 

  6. Barbará T, Martinelli G, Palma-Silva C, Fay MF, Mayo S, Lexer C (2009) Genetic relationships and variation in reproductive strategies in four closely related bromeliads adapted to neotropical ‘inselbergs’: Alcantarea glaziouana, A. regina, A. geniculata and A. imperialis (Bromeliaceae). Ann Bot 103:65–77

    Article  PubMed  Google Scholar 

  7. Beatty GE, Provan J (2011) High clonal diversity in threatened peripheral populations of the yellow bird’s nest (Hypopitys monotropa; syn. Monotropa hypopitys). Ann Bot 107:663–670

    Article  PubMed  Google Scholar 

  8. Blaha J, Baloch E, Grube M (2006) High photobiont diversity in symbioses of the euryoecious lichen Lecanora rupicola (Lecanoraceae, Ascomycota). Biol J Linn Soc 88:283–293

    Article  Google Scholar 

  9. Buschbom J (2007) Migration between continents: geographical structure and long-distance gene flow in Porpidia flavicunda (lichen-forming Ascomycota). Mol Ecol 16:1835–1846

    Article  PubMed  Google Scholar 

  10. Buschbom J, Müller G (2006) Testing ‘species pair’ hypotheses: evolutionary processes in the lichen-forming species complex Porpidia flavocoerulescens and Porpidia melinodes. Mol Bio Evol 23:574–586

    Article  CAS  Google Scholar 

  11. Carballal R et al (2010) Pannariaceae, Flora Liquenológica Ibérica, Sociedad Española de Liquenología, Pontevedra p 9–15

  12. Cassie DM, Piercey-Normore MD (2008) Dispersal in a sterile lichen-forming fungus, Thamnolia subuliformis (Ascomycotina: Icmadophilaceae). Can J Botany 86:751–762

    Article  CAS  Google Scholar 

  13. Crespo A, Molina MC, Blanco O, Schroeter B, Sancho L, Hawksworth DL (2002) rDNA ITS and β-tubulin gene sequence analyses reveal two monophyletic groups within the cosmopolitan lichen Parmelia saxatilis. Mycol Res 106:788–795

    Article  CAS  Google Scholar 

  14. Eckert CG (2001) The loss of sex in clonal plants. Evol Ecol 15:501–520

    Article  Google Scholar 

  15. Elvebakk A, Papaefthimiou D, Robertsen EH, Liaimer A (2008) Phylogenetic patterns among Nostoc cyanobionts within bi- and tripartite lichens of the genus Pannaria. J Phycol 44:1049–1059

    Article  CAS  Google Scholar 

  16. Excoffier L, Smouse PE, Quattro JM (1992) Analysis of molecular variance inferred from metric distances among DNA haplotypes: application to human mitochondrial DNA restriction sites. Genetics 131:479–491

    PubMed  CAS  Google Scholar 

  17. Excoffier L, Lischer HEL (2010) ARLEQUIN suite ver 3.5: a new series of programs to perform population genetics analyses under Linux and Windows. Mol Ecol Resour 10:564–567

    Article  PubMed  Google Scholar 

  18. Fernández-Mendoza F, Domaschke S, García MA, Jordan P, Martin MP, Printzen C (2011) Population structure of mycobionts and photobionts of the widespread lichen Cetraria aculeata. Mol Ecol 20:1208–1232

    Article  PubMed  Google Scholar 

  19. Friedl T, Büdel B (1996) Photobionts. In: Nash TH III (ed) Lichen biology. Cambridge University Press, New York, pp 8–23

    Google Scholar 

  20. Glez-Peña D et al (2010) ALTER: program-oriented format conversion of DNA and protein alignments. Nucleic Acids Res. doi:10.1093/nar/gkq321

  21. Hestmark G, Miadlikowska J, Kauff F, Fraker E, Molnar K, Lutzoni F (2011) Single origin and subsequent diversification of Central Andean endemic Umbilicaria species. Mycologia 103:45–56

    Article  PubMed  Google Scholar 

  22. Hill DJ (2009) Asymmetric co-evolution in the lichen symbiosis caused by a limited capacity for adaptation in the photobiont. Bot Rev 75:326–338

    Article  Google Scholar 

  23. Honegger R (1998) The lichen symbiosis: what is so spectacular about it? Lichenologist 30:193–212

    Google Scholar 

  24. James PW, Purvis OW (1992) Degelia Arvidsson & Galloway. In: Purvis OW, Coppins BJ, Hawksworth DL, James JW, Moore DM (eds) The lichen flora of Great Britain and Ireland. Natural History Museum Publications, London, pp 230–232

    Google Scholar 

  25. Jørgensen PM (1978) The lichen family Pannariaceae in Europe. Opera Botanica 45:1–123

    Google Scholar 

  26. Jørgensen PM, James PW (1990) Studies in the lichen family Pannariaceae IV. The genus Degelia. In: Jahns HM (ed) Contributions to Lichenology in Honour of A Henssen. Bibliotheca Lichenologica No. 38 J Cramer, Berlin-Stuttgart, pp 253–276

  27. Lättman H, Lindblom L, Mattsson JE, Milberg P, Skage M, Ekman S (2009) Estimating the dispersal capacity of the rare lichen Cliostomum corrugatum. Biol Conserv 142:1870–1878

    Article  Google Scholar 

  28. Lindblom L, Ekman S (2006) Genetic variation and population differentiation in the lichen-forming ascomycete Xanthoria parietina on the island Storfosna, central Norway. Mol Ecol 15:1545–1559

    Article  PubMed  CAS  Google Scholar 

  29. Liu YJ, Whelen S, Hall BD (1999) Phylogenetic relationships among ascomycetes: evidence from an RNA polymerase II subunit. Mol Biol Evol 16:1799–1808

    Article  PubMed  CAS  Google Scholar 

  30. Maddison W, Maddison D (2001) MacClade: analysis of phylogeny and character evolution, version 4.01. Sinauer, Sunderland, Massachusetts, USA

    Google Scholar 

  31. Martin DP, Lemey P, Lott M, Moulton V, Posada D, Lefeuvre P (2010) RDP3: a flexible and fast computer program for analyzing recombination. Bioinformatics 26:2462–2463

    Article  PubMed  CAS  Google Scholar 

  32. Martínez I, Aragón G, Sarrión FJ, Escudero A, Burgaz AR, Coppins AM (2003) Threatened lichens in Central Spain (saxicolous species excluded). Cryptogamie Mycol 24:73–97

    Google Scholar 

  33. Miadlikowska J, Schoch C, Kageyama S, Molnar K, Lutzoni F, McCune B (2011) Hypogymnia phylogeny, including Cavernularia, reveals biogeographic structure. Bryologist 114:392–400

    Article  Google Scholar 

  34. Nei M (1978) Estimation of average heterozygosity and genetic distance from a small number of individuals. Genetics 89:538–590

    Google Scholar 

  35. Nelsen MP, Gargas A (2008) Dissociation and horizontal transmission of codispersing lichen symbionts in the genus Lepraria. New Phytol 177:264–275

    PubMed  CAS  Google Scholar 

  36. O’Brien H, Miadlikowska J, Lutzoni F (2005) Assessing host specialization in symbiotic cyanobacteria associated with four closely related species of the lichen fungus Peltigera. Eur J Phycol 40:363–378

    Article  Google Scholar 

  37. Otálora MAG, Martínez I, O’Brien H, Molina MC, Aragón G, Lutzoni F (2010) Multiple origins of high reciprocal symbiotic specificity at an intercontinental spatial scale among gelatinous lichens (Collemataceae, Lecanoromycetes). Mol Phylogenet Evol 56:1089–1095

    Article  PubMed  Google Scholar 

  38. Otálora MAG, Martínez I, Aragón G, Molina MC (2010) Phylogeography and divergence date estimates of a lichen species complex with a disjunct distribution pattern. Am J Bot 97:216–223

    Article  PubMed  Google Scholar 

  39. Palice Z, Printzen C (2004) Genetic variability in tropical and temperate populations of Trapeliopsis glaucolepidea: evidence against long-range dispersal in a lichen with disjunct distribution. Mycotaxon 90:43–54

    Google Scholar 

  40. Piercey-Normore MD (2006) The lichen-forming ascomycete Evernia mesomorpha associates with multiple genotypes of Trebouxia jamesii. New Phytol 169:331–344

    Article  PubMed  CAS  Google Scholar 

  41. Piercey-Normore MD, DePriest PT (2001) Algal switching among lichen symbioses. Am J Bot 88:1490–1498

    Article  PubMed  CAS  Google Scholar 

  42. Pochon X, Pawlowski J (2006) Evolution of the soritids Symbiodinium symbiosis. Symbiosis 42:77–88

    Google Scholar 

  43. Porras-Alfaro A, Bayman P (2007) Mycorrhizal fungi of Vanilla: diversity, specificity and effects on seed germination and plant growth. Mycologia 99:510–525

    Article  PubMed  CAS  Google Scholar 

  44. Printzen C, Ekman S (2002) Genetic variability and its geographical distribution in the widely disjunct Cavernularia hultenii. Lichenologist 34:101–111

    Article  Google Scholar 

  45. Printzen C, Ekman S, Tønsberg T (2003) Phylogeography of Cavernularia hultenii: evidence for slow genetic drift in a widely disjunct lichen. Mol Ecol 12:1473–1486

    Article  PubMed  CAS  Google Scholar 

  46. Rikkinen J, Oksanen I, Lohtander K (2002) Lichen guilds share related cyanobacterial symbionts. Science 297:357

    Article  PubMed  CAS  Google Scholar 

  47. Rikkinen J (2003) Ecological and evolutionary role of photobiont-mediated guilds in lichens. Symbiosis 34:99–110

    Google Scholar 

  48. Romeike J, Friedl T, Helms G, Ott S (2002) Genetic diversity of algal and fungal partners in four species of Umbilicaria (Lichenized Ascomycetes) along a transect of the Antarctic Peninsula. Mol Bio Evol 19:1209–1217

    Article  CAS  Google Scholar 

  49. Rowan R, Knowlton N (1995) Intraspecific diversity and ecological zonation in coral-algal symbioses. Proc Natl Acad Sci USA 92:2850–2853

    Article  PubMed  CAS  Google Scholar 

  50. Rozas JJ, Sanches-Delbarrio C, Messeguer X, Rozas R (2003) DnaSP, DNA polymorphism analyses by the coalescent and other methods. Bioinformatics 19:2496–2497

    Article  PubMed  CAS  Google Scholar 

  51. Rudi K, Skulberg OM, Jakobsen KS (1998) Evolution of cyanobacteria by exchange of genetic material among phyletically related strains. J Bacteriol 180:3453–3461

    PubMed  CAS  Google Scholar 

  52. Scheidegger C, Werth S (2009) Conservation strategies for lichens: insights from population biology. Fungal Biol Rev 23:55–66

    Article  Google Scholar 

  53. Schlick-Steiner BC, Steiner FM, Konrad H, Seifert B, Christian E, Moder K, Stauffer C, Crozier RH (2008) Specificity and transmission mosaic of ant nestwall fungi. Proc Natl Acad Sci USA 105:940–943

    Article  PubMed  CAS  Google Scholar 

  54. Seymour FA, Crittenden PD, Dyer PS (2005) Sex in the extremes: lichen- forming fungi. Mycologist 19:51–58

    Article  Google Scholar 

  55. Stephenson AG, Good SV, Vogler DW (2000) Interrelationships among inbreeding depression, plasticity in the self-incompatibility system, and the breeding system of Campanula rapunculoides L. (Campanulaceae). Ann Bot 85:211–219

    Article  CAS  Google Scholar 

  56. Walser JC (2004) Molecular evidence for limited dispersal of vegetative propagules in the epiphytic lichen Lobaria pulmonaria. Am J Bot 91:1273–1276

    Article  PubMed  Google Scholar 

  57. Werth S, Sork VL (2008) Local genetic structure in North American epiphytic lichen, Ramalina menziesii (Ramalinaceae). Am J Bot 95:568–576

    Article  PubMed  CAS  Google Scholar 

  58. Werth S, Sork VL (2010) Identity and genetic structure of the photobiont of the epiphytic lichen Ramalina menziesii on three oak species in southern California. Am J Bot 97:821–830

    Article  PubMed  CAS  Google Scholar 

  59. Werth S, Scheidegger C (2012) Congruent genetic structure in the lichen-forming fungus Lobaria pulmonaria and its green-algal photobiont. Mol Plant Microbe Interact 25:220–230

    Article  PubMed  CAS  Google Scholar 

  60. White TJ, Bruns T, Lee S, Taylor JW (1990) Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. In: Innis MA, Gelfand DH, Sninsky JJ, White TJ (eds) PCR Protocols: a guide to methods and applications. Academic Press, San Diego, pp 315–322

    Google Scholar 

  61. Wirtz N, Lumbsch T, Green TGA, Türk R, Pintado A, Sancho L, Schroeter B (2003) Lichen fungi have low cyanobiont selectivity in maritime Antarctica. New Phytol 160:177–183

    Article  Google Scholar 

  62. Wornik S, Grube M (2010) Joint dispersal does not imply maintenance of partnerships in lichen symbioses. Microb Ecol 59:150–157

    Article  PubMed  Google Scholar 

  63. Yahr R, Vilgalys R, DePriest PT (2006) Geographic variation in algal partners of Cladonia subtenuis (Cladoniaceae) highlights the dynamic nature of a lichen symbiosis. New Phytol 171:847–860

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We thank Tatiana Flores, Marta Rubio, and Sonia Merinero for help with fieldwork. We also thank Ana Millanes and Jose Más for support in the molecular Lab at URJC. We also thank two anonymous reviewers who provided useful comments, correction and suggestions on an earlier version of this manuscript. This research was supported by the Dirección General del Medio Natural, Comunidad Autónoma de Castilla-La Mancha (projects POII09-0286-4849; GU002806; SC 0001/07), Ministerio de Educación y Ciencia and Ministerio de Ciencia e Innovación of Spain (projects CGL2007-66066-C04-04/BOS and CGL2010-22049).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mónica A. G. Otálora.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Otálora, M.A.G., Salvador, C., Martínez, I. et al. Does the Reproductive Strategy Affect the Transmission and Genetic Diversity of Bionts in Cyanolichens? A Case Study Using Two Closely Related Species. Microb Ecol 65, 517–530 (2013). https://doi.org/10.1007/s00248-012-0136-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00248-012-0136-5

Keywords

Navigation