Skip to main content
Log in

Microbial Diversity and PAH Catabolic Genes Tracking Spatial Heterogeneity of PAH Concentrations

  • Environmental Microbiology
  • Published:
Microbial Ecology Aims and scope Submit manuscript

Abstract

We analyzed the within-site spatial heterogeneity of microbial community diversity, polyaromatic hydrocarbon (PAH) catabolic genotypes, and physiochemical soil properties at a creosote contaminated site. Genetic diversity and community structure were evaluated from an analysis of denaturant gradient gel electrophoresis (DGGE) of polymerase chain reaction (PCR)-amplified sequences of 16S rRNA gene. The potential PAH degradation capability was determined from PCR amplification of a suit of aromatic dioxygenase genes. Microbial diversity, evenness, and PAH genotypes were patchily distributed, and hot and cold spots of their distribution coincided with hot and cold spots of the PAH distribution. The analyses revealed a positive covariation between microbial diversity, biomass, evenness, and PAH concentration, implying that the creosote contamination at this site promotes diversity and abundance. Three patchily distributed PAH-degrading genotypes, NAH, phnA, and pdo1, were identified, and their abundances were positively correlated with the PAH concentration and the fraction of soil organic carbon. The covariation of the PAH concentration with the number and spatial distribution of catabolic genotypes suggests that a field site capacity to degrade PAHs may vary with the extent of contamination.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Amellal N, Portal J, Vogel T, Berthelin J (2001) Distribution and location of polycyclic aromatic hydrocarbons (PAHs) and PAH-degrading bacteria within polluted soil aggregates. Biodegradation 12:49–57

    Article  PubMed  CAS  Google Scholar 

  2. Atlas RM, Horowitz A, Krichevsky M, Bej AK (1991) Response of microbial-populations to environmental disturbance. Microb Ecol 22:249–256

    Article  Google Scholar 

  3. Baldwin BR, Nakatsu CH, Nies L (2003) Detection and enumeration of aromatic oxygenase genes by multiplex and real-time PCR. Appl Environ Microbiol 69:3350–3358

    Article  PubMed  CAS  Google Scholar 

  4. Bengtsson G, Törneman N (2009) A spatial approach to environmental risk assessment of PAH contamination. Risk Anal 29:48–61

    Article  PubMed  Google Scholar 

  5. Bengtsson G, Törneman N, Yang X (2010) Spatial uncoupling of biodegradation, soil respiration, and PAH concentration in a creosote contaminated soil. Environ Pollut 158:2865–2871

    Article  PubMed  CAS  Google Scholar 

  6. Borneman J, Skroch PW, O'Sullivan KM, Palus JA, Rumjanek NG, Jansen JL, Nienhuis J, Triplett EW (1996) Molecular microbial diversity of an agricultural soil in Wisconsin. Appl Environ Microbiol 62:1935–1943

    PubMed  CAS  Google Scholar 

  7. Broost MJ, Aarts L, Tooren CF, Stein A (1999) Quantification of the effects of spatially varying environmental contaminants into a cost model for soil remediation. J Environ Manage 56:133–145

    Article  Google Scholar 

  8. Brus DJ, de Gruijter JJ (1997) Random sampling or geostatistical modelling? Choosing between design-based and model-based sampling strategies for soil (with discussion). Geoderma 80:1–44

    Article  Google Scholar 

  9. Cheung PY, Kinkle BK (2001) Mycobacterium diversity and pyrene mineralization in petroleum-contaminated soils. Appl Environ Microbiol 67:2222–2229

    Article  PubMed  CAS  Google Scholar 

  10. Dilly O, Bloem J, Vos A, Munch JC (2004) Bacterial diversity in agricultural soils during litter decomposition. Appl Environ Microbiol 70:468–474

    Article  PubMed  CAS  Google Scholar 

  11. El Fantroussi S, Verschuere L, Verstraete W, Top EM (1999) Effect of phenylurea herbicides on soil microbial communities estimated by analysis of 16S rRNA gene fingerprints and community-level physiological profiles. Appl Environ Microbiol 65:982–988

    PubMed  CAS  Google Scholar 

  12. Feris KP, Hristova K, Gebreyesus B, Mackay D, Scow KM (2004) A shallow BTEX and MTBE contaminated aquifer supports a diverse microbial community. Microb Ecol 48:589–600

    Article  PubMed  CAS  Google Scholar 

  13. Fleming JT, Sanseverino J, Sayler GS (1993) Quantitative relationship between naphthalene catabolic gene-frequency and expression in predicting PAH degradation in soils at town gas manufacturing sites. Environ Sci Technol 27:1068–1074

    Article  CAS  Google Scholar 

  14. Franklin RB, Blum KB, McComb AC, Mills AL (2002) A geostatistical analysis of small-scale spatial variability in bacterial abundance and community structure in salt marsh creek bank sediments. FEMS Microbiol Ecol 42:71–80

    Article  PubMed  CAS  Google Scholar 

  15. Fredrickson JK, Balkwill DL, Zachara JM, Li SMW, Brockman FJ, Simmons MA (1991) Physiological diversity and distributions of heterotrophic bacteria in deep cretaceous sediments of the Atlantic coastal-plain. Appl Environ Microbiol 57:402–411

    PubMed  CAS  Google Scholar 

  16. Girvan MS, Campbell CD, Killham K, Prosser JI, Glover LA (2005) Bacterial diversity promotes community stability and functional resilience after perturbation. Environ Microbiol 7:301–313

    Article  PubMed  CAS  Google Scholar 

  17. Gray ND, Hastings RC, Sheppard SK, Loughnane P, Lloyd D, McCarthy AJ, Head IM (2003) Effects of soil improvement treatments on bacterial community structure and soil processes in an upland grassland soil. FEMS Microbiol Ecol 46:11–22

    Article  PubMed  CAS  Google Scholar 

  18. Griffiths BS, Ritz K, Bardgett RD, Cook R, Christensen S, Ekelund F, Sorensen SJ, Bååth E, Bloem J, de Ruiter PC, Dolfing J, Nicolardot B (2000) Ecosystem response of pasture soil communities to fumigation-induced microbial diversity reductions: an examination of the biodiversity–ecosystem function relationship. Oikos 90:279–294

    Article  Google Scholar 

  19. Griffiths BS, Kuan HL, Ritz K, Glover LA, McCaig AE, Fenwick C (2004) The relationship between microbial community structure and functional stability, tested experimentally in an upland pasture soil. Microb Ecol 47:104–113

    Article  PubMed  CAS  Google Scholar 

  20. Grundmann GL, Debouzie D (2000) Geostatistical analysis of the distribution of NH +4 and NO −−2 oxidizing bacteria and serotypes at the millimeter scale along a soil transect. FEMS Microbiol Ecol 34:57–62

    PubMed  CAS  Google Scholar 

  21. Hall SJ, Gray SA, Hammett ZL (2000) Biodiversity–productivity relations: an experimental evaluation of mechanisms. Oecologia 122:545–555

    Article  Google Scholar 

  22. Johnsen AR, de Lipthay JR, Sørensen SJ, Ekelund F, Andersen O, Karlson U, Jacobsen CS (2006) Microbial degradation of street dust PAHs in microcosms simulating diffuse pollution of urban soil. Environ Microbiol 8:535–45

    Article  PubMed  CAS  Google Scholar 

  23. Johnston EL, Roberts DA (2009) Contaminants reduce the richness and evenness of marine communities: a review and meta-analysis. Environ Pollut 157:1745–1752

    Article  PubMed  CAS  Google Scholar 

  24. Krivobok S, Kuony S, Meyer C, Louwagie M, Willison JC, Jouanneau Y (2003) Identification of pyrene-induced proteins in Mycobacterium sp. strain 6PY1: evidence for two ring-hydroxylating dioxygenases. J Bacteriol 185:3828–3841

    Article  PubMed  CAS  Google Scholar 

  25. Langworthy DE, Stapleton RD, Sayler GS, Findlay RH (1998) Genotypic and phenotypic responses of a riverine microbial community to polycyclic aromatic hydrocarbon contamination. Appl Environ Microbiol 64:3422–3428

    PubMed  CAS  Google Scholar 

  26. Laurie AD, Lloyd-Jones G (1999) The phn genes of Burkholderia sp. strain RP007 constitute a divergent gene cluster for polycyclic aromatic hydrocarbon catabolism. J Bacteriol 181:531–540

    PubMed  CAS  Google Scholar 

  27. Laurie AD, Lloyd-Jones G (2000) Quantification of phnAc and nahAc in contaminated New Zealand soils by competitive PCR. Appl Environ Microbiol 66:1814–1817

    Article  PubMed  CAS  Google Scholar 

  28. de Lipthay JR, Johnsen K, Albrechtsen H-J, Rosenberg P, Aamand J (2004) Bacterial diversity and community structure of a sub-surface aquifer exposed to realistic low herbicide concentrations. FEMS Microbiol Ecol 49:59–69

    Article  PubMed  Google Scholar 

  29. de Lipthay JR, Rasmussen LD, Oregaard G, Simonsen K, Bahl M, Kroer N, Sørensen SJ (2008) Acclimation of subsurface microbial communities to mercury. FEMS Microbiol Ecol 65:145–155

    Article  PubMed  Google Scholar 

  30. Lloyd-Jones G, Laurie AD, Hunter DWF, Fraser R (1999) Analysis of catabolic genes and phenanthrene degradation in contaminated New Zealand soils. FEMS Microbiol Ecol 29:69–79

    Article  CAS  Google Scholar 

  31. Loreau M (2001) Microbial diversity, producer–decomposer interactions and ecosystem processes: a theoretical model. Proc R Soc Lond B Biol Sci 268:303–309

    Article  CAS  Google Scholar 

  32. Margesin R, Labbe D, Schinner F, Greer CW, Whyte LG (2003) Characterization of hydrocarbon-degrading microbial populations in contaminated and pristine alpine soils. Appl Environ Microbiol 69:3085–3092

    Article  PubMed  CAS  Google Scholar 

  33. Martin TL, Trevors JT, Kaushik NK (1999) Soil microbial diversity, community structure and denitrification in a temperate riparian zone. Biodivers Conserv 8:1057–1078

    Article  Google Scholar 

  34. Müller AK, Westergaard K, Christensen S, Sørensen SJ (2002) The diversity and function of soil microbial communities exposed to different disturbances. Microb Ecol 44:49–58

    Article  PubMed  Google Scholar 

  35. Muyzer G, Smalla K (1998) Application of denaturing gradient gel electrophoresis (DGGE) and temperature gradient gel electrophoresis (TGGE) in microbial ecology. Antonie Van Leeuwenhoek 73:127–141

    Article  PubMed  CAS  Google Scholar 

  36. Nordlund I, Powlowski J, Shingler V (1990) Complete nucleotide sequence and polypeptide analysis of multicomponent hydroxylase from Pseudomonas sp. strain CF600. J Bacteriol 172:6826–6833

    PubMed  CAS  Google Scholar 

  37. Nüsslein K, Tiedje JM (1998) Characterization of the dominant and rare members of a young Hawaiian soil bacterial community with small-subunit ribosomal DNA amplified from DNA fractionated on the basis of its guanine and cytosine composition. Appl Environ Microbiol 64:1283–1289

    PubMed  Google Scholar 

  38. Peng R-H, Xiong A-S, Xue Y, Fu X-Y, Gao F, Zhao W, Tian Y-S, Yao Q-H (2008) Microbial biodegradation of polyaromatic hydrocarbons. FEMS Microbiol Rev 32:927–955

    Article  PubMed  CAS  Google Scholar 

  39. Pennanen T, Liski J, Bååth E, Kitunen V, Uotila J, Westman CJ, Fritze H (1999) Structure of the microbial communities in coniferous forest soils in relation to site fertility and stand development stage. Microb Ecol 38:168–179

    Article  PubMed  Google Scholar 

  40. Poulsen PHB, Al-Soud WA, Bergmark L, Magid J, Hansen LH, Sørensen SJ (2012) Effects of fertilization with urban and agricultural organic wastes in a field trial—prokaryotic diversity investigated by pyrosequencing. Soil Biol Biochem doi:10.1016/j.soilbio.2011.12.023

  41. Rasmussen LD, Sørensen SJ (2001) Effects of mercury contamination on the culturable heterotrophic, functional and genetic diversity of the bacterial community in soil. FEMS Microbiol Ecol 36:1–9

    Article  PubMed  CAS  Google Scholar 

  42. Ritz K, McNicol JW, Nunan N, Grayston S, Millard P, Atkinson D, Gollotte A, Habeshaw D, Boag B, Clegg CD, Griffiths BS, Wheatley RE, Glover LA, McCaig AE, Prosser IJ (2004) Spatial structure in soil chemical and microbiological properties in an upland grassland. FEMS Microb Ecol 49:191–205

    Article  CAS  Google Scholar 

  43. Robertson GP, Klingensmith KM, Klug MJ, Paul EA, Crum JR, Ellis BG (1997) Soil resources, microbial activity, and primary production across an agricultural ecosystem. Ecol Appl 7:158–170

    Article  Google Scholar 

  44. Rossello-Mora R, Amann R (2001) The species concept for prokaryots. FEMS Microbiol Rev 25:39–67

    Article  PubMed  CAS  Google Scholar 

  45. Röver M, Kaiser EA (1999) Spatial heterogeneity within the plough layer: low and moderate variability of soil properties. Soil Biol Biochem 31:175–187

    Article  Google Scholar 

  46. Saetre P (1999) Spatial patterns of ground vegetation, soil microbial biomass and activity in a mixed spruce-birch stand. Ecography 22:183–192

    Article  Google Scholar 

  47. Saetre P, Bååth E (2000) Spatial variation and patterns of soil microbial community structure in a mixed spruce–birch stand. Soil Biol Biochem 32:909–917

    Article  CAS  Google Scholar 

  48. Sessitsch A, Weilharter A, Gerzabek MH, Kirchmann H, Kandeler E (2001) Microbial population structures in soil particle size fractions of a long-term fertilizer field experiment. Appl Environ Microbiol 67:4215–4224

    Article  PubMed  CAS  Google Scholar 

  49. Sigler WV, Zeyer J (2002) Microbial diversity and activity along the forefields of two receding glaciers. Microb Ecol 43:397–407

    Article  PubMed  CAS  Google Scholar 

  50. Singh BK, Campbell CD, Sørensen SJ, Zhou J (2009) Soil genomics. Nature Rev Microbiol 7:756

    Article  CAS  Google Scholar 

  51. Stapleton RD, Sayler GS, Boggs JM, Libelo EL, Stauffer T, Macintyre WG (2000) Changes in subsurface catabolic gene frequencies during natural attenuation of petroleum hydrocarbons. Environm Sci Technol 34:1991–1999

    Article  CAS  Google Scholar 

  52. Stoyan H, De-Polli H, Bohm S, Robertson GP, Paul EA (2000) Spatial heterogeneity of soil respiration and related properties at the plant scale. Plant and Soil 222:203–214

    Article  CAS  Google Scholar 

  53. Tilman D, Pacala S (1993) The maintenance of species diversity in plant communities. In: Riclefs RE, Schuler D (eds) Species diversity in ecological communities. University of Chicago Press, Chicago, pp 13–25

    Google Scholar 

  54. Tilman D (1999) The ecological consequences of changes in biodiversity: a search for general principles. Ecology 80:1455–1474

    Google Scholar 

  55. Torsvik V, Øvreås L (2002) Microbial diversity and function in soil: from genes to ecosystems. Curr Opin Microbiol 5:240–245

    Article  PubMed  CAS  Google Scholar 

  56. Törneman N, Yang X, Bååth E, Bengtsson G (2008) Spatial covariation of microbial community composition and polycyclic aromatic hydrocarbon concentration in a creosote-polluted soil. Environ Toxicol Chem 27:1039–1046

    Article  PubMed  Google Scholar 

  57. Vivas A, Moreno B, del Val C, Macci C, Masciandro G, Benitez E (2008) Metabolic and bacterial diversity in soils historically contaminated by heavy metals and hydrocarbons. J Environ Monit 10:1287–1296

    Article  PubMed  CAS  Google Scholar 

  58. Webster G, Newberry CJ, Fry JC, Weightman AJ (2003) Assessment of bacterial community structure in the deep sub-seafloor biosphere by 16S rDNA-based techniques: a cautionary tale. J Microbiol Meth 55:155–164

    Article  PubMed  CAS  Google Scholar 

  59. Wertman KF, Wyman AR, Botstein D (1986) Host/vector interactions which affect the viability of recombinant phage lambda clones. Gene 49:253–262

    Article  PubMed  CAS  Google Scholar 

  60. Widada J, Nojiri H, Kasuga K, Yoshida T, Habe H, Omori T (2002) Molecular detection and diversity of polycyclic aromatic hydrocarbon-degrading bacteria isolated from geographically diverse sites. Appl Microbiol Biotechnol 58:202–209

    Article  PubMed  CAS  Google Scholar 

  61. Wikström P, Wiklund A, Andersson A-C, Forsman M (1996) DNA recovery and PCR quantification of catechol 2,3-dioxygenase genes from different soil types. J Biotechnol 52:107–120

    Article  PubMed  Google Scholar 

  62. Williams PA, Murray K (1974) Metabolism of benzoate and the methylbenzoates by Pseudomonas putida (arvilla) mt-2: evidence for the existence of a TOL plasmid. J Bacteriol 120:416–423

    PubMed  CAS  Google Scholar 

  63. Wilson MS, Herrick JB, Jeon CO, Hinman DE, Madsen EL (2003) Horizontal transfer of phnAc dioxygenase genes within one of two phenotypically and genotypically distinctive naphthalene-degrading guilds from adjacent soil environments. Appl Environ Microbiol 69:2172–2181

    Article  PubMed  CAS  Google Scholar 

  64. Wohl DL, Arora S, Gladstone JR (2004) Functional redundancy supports biodiversity and ecosystem function in a closed and constant environment. Ecology 85:1534–1540

    Article  Google Scholar 

  65. Yin B, Crowley D, Sparovek G, De Melo WJ, Borneman J (2000) Bacterial functional redundancy along a soil reclamation gradient. Appl Environ Microbiol 66:4361–4365

    Article  PubMed  CAS  Google Scholar 

  66. Zhou HW, Wong AHY, Yu RMK, Park YD, Wong YS, Tam NFY (2009) Polycyclic aromatic hydrocarbon-induced structural shift of bacterial communities in mangrove sediment. Microb Ecol 58:153–160

    Article  PubMed  CAS  Google Scholar 

  67. Zhou JZ, Xia BC, Treves DS, Wu LY, Marsh TL, O'Neill RV, Palumbo AV, Tiedje JM (2002) Spatial and resource factors influencing high microbial diversity in soil. Appl Environ Microbiol 68:326–334

    Article  PubMed  CAS  Google Scholar 

  68. Zelles L (1999) Fatty acid patterns of phospholipid and lipopolysaccharides in the characterization of microbial communities in soil: a review. Biol Fertil Soils 29:111–129

    Article  CAS  Google Scholar 

  69. Zylstra GJ, Gibson DT (1989) Toluene degradation by Pseudomonas putida F1: nucleotide sequence of the todC1C2BADE genes and their expression in E. coli. J Biol Chem 264:14940–14946

    PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The present study was sponsored by grants from the Swedish Environmental Protection Agency. Per Bengtson is greatly acknowledged for field assistance.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Göran Bengtsson.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bengtsson, G., Törneman, N., De Lipthay, J.R. et al. Microbial Diversity and PAH Catabolic Genes Tracking Spatial Heterogeneity of PAH Concentrations. Microb Ecol 65, 91–100 (2013). https://doi.org/10.1007/s00248-012-0112-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00248-012-0112-0

Keywords

Navigation