Skip to main content
Log in

Microcystis Genotype Succession and Related Environmental Factors in Lake Taihu during Cyanobacterial Blooms

  • Environmental Microbiology
  • Published:
Microbial Ecology Aims and scope Submit manuscript

Abstract

From spring to autumn, heavy Microcystis blooms always occur in Lake Taihu, although environmental conditions vary markedly. We speculated that Microcystis genotype succession could play an important role in adaptation to environmental changes and long-term maintenance of the high Microcystis biomass. In this study, we investigated Microcystis genotype succession pattern and the related environmental variables in Lake Taihu during cyanobacterial blooms. Denaturing gradient gel electrophoresis (DGGE) of polymerase chain reaction -amplified the genus-specific cpcBA and mcyJ gene fragments was used to monitor the variations of Microcystis genotype and potential microcystin (MC)-producing Microcystis genotype compositions during blooms biweekly in three sites (Meiliang Bay, lake center, and Gonghu Bay) and CANOCO 4.5 for Windows were used for the multivariate statistical analysis of their relationships to environmental variables. DGGE patterns indicated that the number of dominant cpcBA genotype per sample increased from spring to autumn. Principal component analysis ordination plots of DGGE profiles showed clear temporal distribution pattern, but not spatial distribution pattern based on both cpcBA and mcyJ genotype compositions. These results indicated there were relatively gradual successions of Microcystis cpcBA and mcyJ genotype compositions in each site, and no distinct spatial difference among the three sites. Redundancy analyses of the gel patterns showed that, in all the three sites, three environmental factors (nitrate, pH, and chemical oxygen demand) were correlated significantly to successions of both cpcBA and mcyJ genotypes except for mcyJ genotype in the lake center. Spearman’s correlations indicated that the three environmental variables were also strongly correlated with chl a and MC concentrations. These results suggested that the environmental factors affecting succession of Microcystis community composition might also influence the growth of Microcystis and MC production.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7

Similar content being viewed by others

References

  1. Bañares-España E, López-Rodas V, Costas E, Salgado C, Flores-Moya A (2007) Genetic variability associated with photosynthetic pigment concentration, and photochemical and nonphotochemical quenching, in strains of the cyanobacterium Microcystis aeruginosa. FEMS Microbiol Ecol 60:449–455

    Article  PubMed  Google Scholar 

  2. Bañares-España E, López-Rodas V, Salgado C, Costas E, Flores-Moya A (2006) Inter-strain variability in the photosynthetic use of inorganic carbon, exemplified by the pH compensation point, in the cyanobacterium Microcystis aeruginosa. Aquat Bot 85:159–162

    Article  Google Scholar 

  3. Bittencourt-Oliveira MD, de Oliveira MC, Bolch CJS (2001) Genetic variability of Brazilian strains of the Microcystis aeruginosa complex (Cyanobacteria/Cyanophyceae) using the phycocyanin intergenic spacer and flanking regions (cpcBA). J Phycol 37:810–818

    Article  CAS  Google Scholar 

  4. Briand E, Escoffier N, Straub C, Sabart M, Quiblier C, Humbert JF (2009) Spatiotemporal changes in the genetic diversity of a bloom-forming Microcystis aeruginosa (cyanobacteria) population. ISME J 3:419–429

    Article  PubMed  CAS  Google Scholar 

  5. Chen YW, Fan CX, Teubner K, Dokulil M (2003) Changes of nutrients and phytoplankton chlorophyll-alpha in a large shallow lake, Taihu, China: an 8–year investigation. Hydrobiologia 506:273–279

    Article  Google Scholar 

  6. Davis TW, Berry DL, Boyer GL, Gobler CJ (2009) The effects of temperature and nutrients on the growth and dynamics of toxic and non-toxic strains of Microcystis during cyanobacteria blooms. Harmful Algae 8:715–725

    Article  CAS  Google Scholar 

  7. Gafan GP, Lucas VS, Roberts GJ, Petrie A, Wilson M, Spratt DA (2005) Statistical analyses of complex denaturing gradient gel electrophoresis profiles. J Clin Microbiol 43:3971–3978

    Article  PubMed  CAS  Google Scholar 

  8. Graham JL, Loftin KA, Meyer MT, Ziegler AC (2010) Cyanotoxin mixtures and taste-and-odor compounds in cyanobacterial blooms from the midwestern United States. Environ Sci Technol 44:7361–7368

    Article  PubMed  CAS  Google Scholar 

  9. Honkanen RE, Zwiller J, Moore RE, Daily SL, Khatra BS, Dukelow M, Boynton AL (1990) Characterization of microcystin-LR, a potent inhibitor of type-1 and type-2A protein phosphatases. J Biol Chem 265:19401–19404

    PubMed  CAS  Google Scholar 

  10. Hu LM, Hu WP, Zhai SH, Wu HY (2010) Effects on water quality following water transfer in Lake Taihu, China. Ecol Eng 36:471–481

    Article  Google Scholar 

  11. Hu W, Zhai S, Zhu Z, Han H (2008) Impacts of the Yangtze River water transfer on the restoration of Lake Taihu. Ecol Eng 34:30–49

    Article  CAS  Google Scholar 

  12. Huang XF, Chen WM, Cai QM (1999) Survey, observation and analysis of lake ecology. Standards Press of China, Beijing

    Google Scholar 

  13. Ibelings BW, Mur LR (1992) Microprofiles of photosynthesis and oxygen concentration in Microcystis sp. scums. FEMS Microbiol Ecol 86:195–203

    Article  CAS  Google Scholar 

  14. Jöhnk KD, Huisman J, Sharples J, Sommeijer B, Visser PM, Stroom JM (2008) Summer heatwaves promote blooms of harmful cyanobacteria. Glob Chang Biol 14:495–512

    Article  Google Scholar 

  15. Janse I, Meima M, Kardinaal WEA, Zwart G (2003) High-resolution differentiation of cyanobacteria by using rRNA-internal transcribed spacer denaturing gradient gel electrophoresis. Appl Environ Microbiol 69:6634–6643

    Article  PubMed  CAS  Google Scholar 

  16. Jochimsen EM, Carmichael WW, An JS, Cardo DM, Cookson ST, Holmes CEM, Antunes MBD, de Melo DA, Lyra TM, Barreto VST, Azevedo SMFO, Jarvis WR (1998) Liver failure and death after exposure to microcystins at a hemodialysis center in Brazil. New Engl J Med 338:873–878

    Article  PubMed  CAS  Google Scholar 

  17. Jones GJ, Korth W (1995) In-situ production of volatile odor compounds by river and reservoir phytoplankton populations in Australia. Water Sci Technol 31:145–151

    CAS  Google Scholar 

  18. Kardinaal W, Janse I, Kamst-van Agterveld M, Meima M, Snoek J, Mur LR, Huisman J, Zwart G, Visser PM (2007) Microcystis genotype succession in relation to microcystin concentrations in freshwater lakes. Aquat Microb Ecol 48:1–12

    Article  Google Scholar 

  19. Kim SG, Joung SH, Ahn CY, Ko SR, Boo SM, Oh HM (2010) Annual variation of Microcystis genotypes and their potential toxicity in water and sediment from a eutrophic reservoir. FEMS Microbiol Ecol 74:93–102

    Article  PubMed  CAS  Google Scholar 

  20. Kim SG, Rhee SK, Ahn CY, Ko SR, Choi GG, Bae JW, Park YH, Oh HM (2006) Determination of cyanobacterial diversity during algal blooms in Daechung Reservoir, Korea, on the basis of cpcBA intergenic spacer region analysis. Appl Environ Microbiol 72:3252–3258

    Article  PubMed  CAS  Google Scholar 

  21. Kisand V, Noges T (2004) Abiotic and biotic factors regulating dynamics of bacterioplankton in a large shallow lake. FEMS Microbiol Ecol 50:51–62

    Article  PubMed  CAS  Google Scholar 

  22. Kuang CP, Deng L, He LL, Liu SG, Gu J (2010) Effects of wind and water transfer on transport of blue algal bloom in Taihu Lake. 2010 International conference on mechanic automation and control engineering (MACE), p 4

  23. López-Rodas V, Costas E, Bañares E, García-Villada L, Altamirano M, Rico M, Salgado C, Flores-Moya A (2006) Analysis of polygenic traits of Microcystis aeruginosa (Cyanobacteria) strains by restricted maximum likelihood (REML) procedures: 2. Microcystin net production, photosynthesis and respiration. Phycologia 45:243–248

    Article  Google Scholar 

  24. Lepš J, Šmilauer P (2003) Multivariate analysis of ecological data using CANOCO. Cambridge University Press, New York

    Google Scholar 

  25. Maberly SC (1996) Diel, episodic and seasonal changes in pH and concentrations of inorganic carbon in a productive lake. Freshwater Biol 35:579–598

    Article  CAS  Google Scholar 

  26. Mackintosh C, Beattie KA, Klumpp S, Cohen P, Codd GA (1990) Cyanobacterial microcystin-LR is a potent and specific inhibitor of protein phosphatase-1 and phosphatase-2A from both mammals and higher-plants. FEBS Lett 264:187–192

    Article  PubMed  CAS  Google Scholar 

  27. McCarthy MJ, Lavrentyev PJ, Yang LY, Zhang L, Chen YW, Qin BQ, Gardner WS (2007) Nitrogen dynamics and microbial food web structure during a summer cyanobacterial bloom in a subtropical, shallow, well-mixed, eutrophic lake (Lake Taihu, China). Hydrobiologia 581:195–207

    Article  CAS  Google Scholar 

  28. Moisander PH, Ochiai M, Lincoff A (2009) Nutrient limitation of Microcystis aeruginosa in northern California Klamath River reservoirs. Harmful Algae 8:889–897

    Article  CAS  Google Scholar 

  29. Muylaert K, Van der Gucht K, Vloemans N, De Meester L, Gillis M, Vyverman W (2002) Relationship between bacterial community composition and bottom-up versus top-down variables in four eutrophic shallow lakes. Appl Environ Microbiol 68:4740–4750

    Article  PubMed  CAS  Google Scholar 

  30. Neilan BA, Jacobs D, Goodman AE (1995) Genetic diversity and phylogeny of toxic cyanobacteria determined by DNA polymorphisms within the phycocyanin locus. Appl Environ Microbiol 61:3875–3883

    PubMed  CAS  Google Scholar 

  31. Paerl HW, Fulton RS, Moisander PH, Dyble J (2001) Harmful freshwater algal blooms, with an emphasis on cyanobacteria. Sci World J 1:76–113

    Article  CAS  Google Scholar 

  32. Paerl HW, Hall NS, Calandrino ES (2011) Controlling harmful cyanobacterial blooms in a world experiencing anthropogenic and climatic-induced change. Sci Total Environ 409:1739–1745

    Article  PubMed  CAS  Google Scholar 

  33. Paerl HW, Huisman J (2009) Climate change: a catalyst for global expansion of harmful cyanobacterial blooms. Environ Microbiol Rep 1:27–37

    Article  CAS  Google Scholar 

  34. Park HD, Iwami C, Watanabe MF, Harada K, Okino T, Hayashi H (1998) Temporal variabilities of the concentrations of intra- and extracellular microcystin and toxic Microcystis species in a hypertrophic lake, Lake Suwa, Japan (1991–1994). Environ Toxicol Water Qual 13:61–72

    Article  CAS  Google Scholar 

  35. Qin BQ, Xu PZ, Wu QL, Luo LC, Zhang YL (2007) Environmental issues of Lake Taihu, China. Hydrobiologia 581:3–14

    Article  CAS  Google Scholar 

  36. Qin BQ, Zhu GW, Gao G, Zhang YL, Li W, Paerl HW, Carmichael WW (2010) A drinking water crisis in Lake Taihu, China: linkage to climatic variability and lake management. Environ Manag 45:105–112

    Article  Google Scholar 

  37. Rico M, Altamirano M, López-Rodas V, Costas E (2006) Analysis of polygenic traits of Microcystis aeruginosa (Cyanobacteria) strains by restricted maximum likelihood (REML) procedures: 1. Size and shape of colonies and cells. Phycologia 45:237–242

    Article  Google Scholar 

  38. Rinta-Kanto JM, Wilhelm SW (2006) Diversity of microcystin-producing cyanobacteria in spatially isolated regions of Lake Erie. Appl Environ Microbiol 72:50835085

    Article  Google Scholar 

  39. Shannon CE (1997) The mathematical theory of communication (reprinted). MD Comput 14:306–317

    PubMed  CAS  Google Scholar 

  40. Sun S, Huang Y (1993) Lake Taihu. China Ocean Press, Beijing

    Google Scholar 

  41. Tillett D, Dittmann E, Erhard M, von Döhren H, Börner T, Neilan BA (2000) Structural organization of microcystin biosynthesis in Microcystis aeruginosa PCC7806: an integrated peptide-polyketide synthetase system. Chem Biol 7:753–764

    Article  PubMed  CAS  Google Scholar 

  42. Tillett D, Neilan BA (2000) Xanthogenate nucleic acid isolation from cultured and environmental cyanobacteria. J Phycol 36:251–258

    Article  CAS  Google Scholar 

  43. Vézie C, Rapala J, Vaitomaa J, Seitsonen J, Sivonen K (2002) Effect of nitrogen and phosphorus on growth of toxic and nontoxic Microcystis strains and on intracellular microcystin concentrations. Microb Ecol 43:443–454

    Article  PubMed  Google Scholar 

  44. Van Wichelen J, van Gremberghe I, Vanormelingen P, Debeer AE, Leporcq B, Menzel D, Codd GA, Descy JP, Vyverman W (2010) Strong effects of amoebae grazing on the biomass and genetic structure of a Microcystis bloom (Cyanobacteria). Environ Microbiol 12:2797–2813

    PubMed  Google Scholar 

  45. Wang K, Chen F (2003) Genetic diversity and population dynamics of Synechococcus spp. and cyanophages in the Chesapeake Bay. Abstracts of the general meeting of the american society for microbiology 103:N-377

  46. Welker M, Hoeg S, Steinberg C (1999) Hepatotoxic cyanobacteria in the shallow lake Muggelsee. Hydrobiologia 409:263–268

    Article  Google Scholar 

  47. Wilson AE, Sarnelle O, Neilan BA, Salmon TP, Gehringer MM, Hay ME (2005) Genetic variation of the bloom-forming cyanobacterium Microcystis aeruginosa within and among lakes: implications for harmful algal blooms. Appl Environ Microbiol 71:6126–6133

    Article  PubMed  CAS  Google Scholar 

  48. Wilson AE, Wilson WA, Hay ME (2006) Intraspecific variation in growth and morphology of the bloom-forming cyanobacterium Microcystis aeruginosa. Appl Environ Microbiol 72:7386–7389

    Article  PubMed  CAS  Google Scholar 

  49. Wu XD, Kong FX, Chen YW, Qian X, Zhang LJ, Yu Y, Zhang M, Xing P (2010) Horizontal distribution and transport processes of bloom-forming Microcystis in a large shallow lake (Taihu, China). Limnologica 40:8–15

    Article  CAS  Google Scholar 

  50. Xu H, Paerl HW, Qin BQ, Zhu GW, Gao G (2010) Nitrogen and phosphorus inputs control phytoplankton growth in eutrophic Lake Taihu, China. Limnol Oceanogr 55:420–432

    Article  CAS  Google Scholar 

  51. Ye WJ, Liu XL, Tan J, Li DT, Yang H (2009) Diversity and dynamics of microcystin-producing cyanobacteria in China’s third largest lake, Lake Taihu. Harmful Algae 8:637–644

    Article  CAS  Google Scholar 

  52. Yin Y, Zhang YL, Liu XH, Zhu GW, Qin BQ, Shi ZQ, Feng LQ (2011) Temporal and spatial variations of chemical oxygen demand in Lake Taihu, China, from 2005 to 2009. Hydrobiologia 665:129–141

    Article  CAS  Google Scholar 

  53. Zhai SJ, Hu WP, Zhu ZC (2010) Ecological impacts of water transfers on Lake Taihu from the Yangtze River, China. Ecol Eng 36:406–420

    Article  Google Scholar 

  54. Zhang XQ, Chen QW (2011) Spatial-temporal characteristic of water quality in Lake Taihu and its relationship with algal bloom. Hupo Kexue 23:339–347

    CAS  Google Scholar 

  55. Zhang YC, Lin S, Qian X, Wang QG, Qian Y, Liu JP, Ge Y (2011) Temporal and spatial variability of chlorophyll a concentration in Lake Taihu using MODIS time-series data. Hydrobiologia 661:235–250

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This study is financially supported by National Basic Research Program of China (973 Program, 2008CB418004), Natural Science Foundation of Jiangsu Province (BK2007150) and China Postdoctoral Science Foundation (No. 20070410345).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pengfu Li.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wang, X., Sun, M., Wang, J. et al. Microcystis Genotype Succession and Related Environmental Factors in Lake Taihu during Cyanobacterial Blooms. Microb Ecol 64, 986–999 (2012). https://doi.org/10.1007/s00248-012-0083-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00248-012-0083-1

Keywords

Navigation